Физика в игрушках проект 7 класс по физике

Обновлено: 24.04.2024

После того как вы поделитесь материалом внизу появится ссылка для скачивания.

Подписи к слайдам:

Проект «Физика в детских игрушках» Подготовила: Черепанова Анастасия Учитель физики : Овчинникова Т.В. Цель работы: рассмотреть применение физических явлений и законов в практической деятельности человека на примере создания детских игрушек. Цель работы: рассмотреть применение физических явлений и законов в практической деятельности человека на примере создания детских игрушек. Объект исследования- физические явления и законы, используемые в устройстве и работе детских игрушек. Предмет исследования- детские игрушки 1. Игрушки, действие которых основано на существовании архимедовой силы и атмосферного давления

Группы игрушек

1. Игрушки, действие которых основано на существовании архимедовой силы и атмосферного давления 2. Заводные игрушки 2. Заводные игрушки 3. Инерционные игрушки 3. Инерционные игрушки 4. Игрушки, действие которых основано на различном положении центра тяжести 4. Игрушки, действие которых основано на различном положении центра тяжести 5. Звуковые игрушки 5. Звуковые игрушки 6. Электрические и магнитные игрушки 6. Электрические и магнитные игрушки 7. Игрушки, действие которых основано на законах оптики 7. Игрушки, действие которых основано на законах оптики 8. Гироскопические игрушки 8. Гироскопические игрушки Практическая часть. Изготовление игрушки «куклы-неваляшки» Практическая часть. Изготовление игрушки «куклы-неваляшки» «Неваляшка» - полое округлое тело, в котором центр тяжести максимально опущен вниз, таким образом, что при наклоне корпуса груз приподнимается и стремится вернуть куклу в вертикальное положение. При всяком наклоне неваляшки её центр тяжести повышается. Это вызывает самостоятельное движение игрушки к исходному положению наиболее устойчивого равновесия, при котором центр тяжести расположен ниже.

Принцип работы

Эта работа доступна людям всех возрастов, ведь для объяснения работы многих детских игрушек достаточно знаний школьного курса физики.

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Столичный центр образовательных технологий г. Москва

Получите квалификацию учитель математики за 2 месяца

от 3 170 руб. 1900 руб.

Количество часов 300 ч. / 600 ч.

Успеть записаться со скидкой

Форма обучения дистанционная


Курс повышения квалификации

Педагогические основы деятельности учителя общеобразовательного учреждения в условиях ФГОС


Курс повышения квалификации

Профессиональные компетенции педагога в рамках Федерального закона «Об образовании в Российской Федерации» №273-ФЗ от 29.12.2012


Курс повышения квалификации

Теория и методика преподавания предмета «Астрономия» в условиях реализации ФГОС СОО


«Инновация. Инновационные технологии»

Рабочие листы и материалы для учителей и воспитателей

Более 2 500 дидактических материалов для школьного и домашнего обучения

Описание презентации по отдельным слайдам:

Физика в игрушках

ВВЕДЕНИЕ
Актуальность темы «Физика в игрушках» в том, что детство было у каждого и интерес к строению поющей, либо просто движущейся игрушки не уменьшается с возрастом.
Разбираясь в принципах работы игрушек, можно лучше понять и одну из самых серьезных наук — физику, которая коренным образом изменила быт человека за последние несколько десятков лет.

ГИПОТЕЗА
Если игрушка интересна
своей подвижностью,
музыкальностью детям,
то она интересна взрослым
своей физической составляющей.

Цели работы
Показать игрушки не как забаву, а как науку.
Показать физику не как науку, а как забаву.
Объяснить принцип действия игрушек на основе законов физики.
Исследовать, а знают ли ученики нашей школы (7-10 классы), какой физический принцип лежит в основе действия той или иной игрушки.

ДЕЛЕНИЕ ИГРУШЕК ПО ГРУППАМ
Игрушки, действие которых основано на существовании архимедовой силы и атмосферного давления
Заводные игрушки
Инерционные игрушки
Игрушки, действие которых основано на различном положении центра тяжести
Звуковые игрушки
Электрические и магнитные игрушки
Игрушки, действие которых основано на законах оптики
Гироскопические игрушки

Для изучения мы выбрали
такие игрушки, как:
Кукла – неваляшка
Йо-йо
Калейдоскоп
Инерционная машинка

Закон отражения
Лучи, падающий и отраженный, лежат в одной плоскости с перпендикуляром, проведенным к границе раздела двух сред в точке падения луча.
Угол падения равен
углу отражения

принцип работы калейдоскопа
Это оптический прибор, в основе действия которого
лежит принцип отражения света от плоских зеркал,
образующих между собой угол

Калейдоскоп
Узоры в калейдоскопе практически никогда не
повторяются. Если у вас есть калейдоскоп с20
стеклышками, и вы будете поворачивать его
10 раз в минуту, то вам понадобится 500 000
миллионов лет, чтобы просмотреть все узоры.

Йо-йо
Йо-йо возвращающееся в руку
Йо-йо не возвращающееся в руку

Условия равновесия тел

Виды равновесия
1. Безразличное равновесие

2. Устойчивое равновесие

3. Неустойчивое равновесие

Неваляшка
Полое округлое тело, в котором центр тяжести максимально опущен вниз, таким образом, что при наклоне корпуса груз приподнимается и стремится вернуть куклу в вертикальное положение

«Продвинутые варианты» неваляшек

Движение по инерции
Явление сохранения скорости тела при
отсутствии действия на него других тел и
изменение скорости только при действии
других тел называют инерцией тел,
а движение при отсутствии действия
на тело других тел
называют движением по инерции.

Инерционная машинка
В основе устройства машинки находится инерционный двигатель – это безпружинный механизм, использующий инерцию маховика, приведенного в быстрое вращение.
Основные детали инерционного двигателя – это ротор и червячный редуктор.
Ротор
Червячный редуктор

Результаты анкетирования
учащихся

ЗАКЛЮЧЕНИЕ
В теоретической части работы мы узнали, что:
в основе устройства калейдоскопа лежит принцип
отражения света;
в основе устройства «йо-йо» – превращение
энергии;
в основе устройства инерционной машинки –
движение по инерции;
а неваляшка работает на основе принципа
устойчивого равновесия тел.

ЗАКЛЮЧЕНИЕ
В практической части работы
мы установили, что
большая часть из опрошенных
учеников 7-10 классов знают
принципы работы
детских игрушек.

ЗАКЛЮЧЕНИЕ
На примере простых игрушек,
которые есть в любом доме,
где только живут дети, мы показали, что
физика – это не только наука о природе, а
ещё и то, что её законы лежат в основе
всех действующих тел, придуманных
человеком для того, чтобы его жизнь была
более удобной и интересной.

И снова новый узор

Так вот ты какой, йо-йо!

  • подготовка к ЕГЭ/ОГЭ и ВПР
  • по всем предметам 1-11 классов

Рабочие листы и материалы для учителей и воспитателей

Более 2 500 дидактических материалов для школьного и домашнего обучения

«Такие разные дети: преимущества тьюторской позиции учителя»

Свидетельство и скидка на обучение каждому участнику

Дистанционные курсы для педагогов

311 лекций для учителей,
воспитателей и психологов

Получите свидетельство
о просмотре прямо сейчас!

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 918 052 материала в базе

Материал подходит для УМК

«Физика», Перышкин А.В.

§63 Центр тяжести тела

«Интеграция современного искусства в детское творчество»

Свидетельство и скидка на обучение
каждому участнику

Ищем педагогов в команду «Инфоурок»

  • ЗП до 91 000 руб.
  • Гибкий график
  • Удаленная работа

Другие материалы

  • Учебник: «Физика», Перышкин А.В.
  • Тема: §64 Условия равновесия тел
  • Учебник: «Физика», Перышкин А.В.
  • Тема: §26 Сила упругости. Закон Гука
  • Учебник: «Физика», Перышкин А.В.
  • Тема: §26 Сила упругости. Закон Гука
  • Учебник: «Физика», Перышкин А.В.
  • Тема: Глава 1. Первоначальные сведения о строении вещества
  • Учебник: «Физика», Перышкин А.В.
  • Тема: §64 Условия равновесия тел
  • Учебник: «Физика», Перышкин А.В.
  • Тема: §22 Плотность вещества
  • Учебник: «Физика», Перышкин А.В.
  • Тема: §35 Давление. Единицы давления
  • Учебник: «Физика», Перышкин А.В.
  • Тема: §39 Давление в жидкости и газе

«Практический подход в работе с утратой смысла жизни: логотерапия»

Свидетельство и скидка на обучение каждому участнику

Вам будут интересны эти курсы:

  • Курс повышения квалификации «Информационные технологии в деятельности учителя физики»
  • Курс повышения квалификации «Основы туризма и гостеприимства»
  • Курс профессиональной переподготовки «Организация логистической деятельности на транспорте»
  • Курс профессиональной переподготовки «Организация менеджмента в туризме»
  • Курс повышения квалификации «ЕГЭ по физике: методика решения задач»
  • Курс профессиональной переподготовки «Управление ресурсами информационных технологий»
  • Курс профессиональной переподготовки «Организация деятельности помощника-референта руководителя со знанием иностранных языков»
  • Курс повышения квалификации «Мировая экономика и международные экономические отношения»
  • Курс профессиональной переподготовки «Корпоративная культура как фактор эффективности современной организации»
  • Курс профессиональной переподготовки «Управление информационной средой на основе инноваций»
  • Курс профессиональной переподготовки «Организация деятельности специалиста оценщика-эксперта по оценке имущества»
  • Курс профессиональной переподготовки «Организация и управление службой рекламы и PR»
  • Курс профессиональной переподготовки «Гражданско-правовые дисциплины: Теория и методика преподавания в образовательной организации»

Оставьте свой комментарий

  • 29.12.2017 7479
  • PPTX 5.1 мбайт
  • 92 скачивания
  • Рейтинг: 4 из 5
  • Оцените материал:

Настоящий материал опубликован пользователем Лосева Людмила Анатольевна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

40%

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

47 минут

«Метод ситуативного анализа Case-study как средство развития учебных и социальных компетенций» Часть 1. Теория

62 минуты

«Здоровый образ жизни - залог успеха»

88 минут

«Развитие мыслительной функции, логических операционных навыков в процессе проведения учебных занятий» (коллоквиум)

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Столичный центр образовательных технологий г. Москва

Получите квалификацию учитель математики за 2 месяца

от 3 170 руб. 1900 руб.

Количество часов 300 ч. / 600 ч.

Успеть записаться со скидкой

Форма обучения дистанционная

С этого года, когда мы приступили к изучению нового предмета физики, и игрушки открылись для нас с новой, совершенно неожиданной стороны. С самого раннего детства начинается наше знакомство с физикой. Играя, мы не обращаем внимания на встречающиеся в устройстве и работе игрушек физические явления и законы. Внимательно посмотрев на игрушки, которые в большом количестве есть в каждом доме. Мы нашли в них много материала, который требует объяснения с физической точки зрения.

Поэтому мы решили отразить мир физики через детские игрушки.

Актуальность исследования: Мы считаем свою работу актуальной, так как она повышает интерес к изучению физики и доступна людям разных возрастов, даже не обладающих большими знаниями в области технических наук. Каждый человек должен иметь представление о физических явлениях и законах, с которыми непосредственно сталкивается в повседневной жизни с самого раннего детства.

Цель работы: рассмотреть применение физических явлений и законов в практической деятельности человека на примере создания детских игрушек.

Объект исследования - детские игрушки.

Предмет исследования - физические явления и законы, используемые в устройстве и работе детских игрушек.

Методы исследования: поисковый. обобщение, исследование опытным путём.

1.Собрать игрушки, имеющиеся дома и у знакомых, в детском саду, постараться «увидеть» их физическую суть.

2. Классифицировать игрушки по принципу действия .

3. Сделать презентацию "Физика в игрушках"

1. Инерционные игрушки

Про тело, которое при взаимодействии медленнее изменяет свою скорость, говорят, что оно более инертно и имеет большую массу. А про тело, которое при этом быстрее изменяет свою скорость, говорят, что оно менее инертно и имеет меньшую массу.

Движение по инерции лежит в основе принципа действия игрушек - автомобилей, мотоциклов: на задней или передней оси, соединяющей колёса, находится ряд шестерёнок, которые в свою очередь соединяются с маховиком, то есть массивным цилиндром. Мы толкаем автомобиль, шестерёнки передают движение маховику. Маховик же обладает большой массой, поэтому будет долго сохранять состояние движения, которое ему сообщили. Именно благодаря тяжелому маховику такую игрушку трудно остановить и она будет двигаться по инерции гораздо дольше времени, чем такая же игрушка без маховика.

2. Плавающие игрушки

Если погрузить в воду мячик и отпустить, то мы увидим, как он тут же всплывет. То же самое происходит и с другими телами (пробкой, щепкой). Какая сила заставляет их всплывать?

На тело, находящееся внутри жидкости, действуют две силы: сила тяжести, направленная вертикально вниз, и архимедова сила, направленная вертикально вверх. Если сила тяжести F тяж больше архимедовой силы F A , то тело будет опускаться на дно, тонуть, т. е. если F тяж > F A , то тело тонет. Если сила тяжести F тяж равна архимедовой силы F A , то тело может находится в равновесии в любом месте, т. е. если F тяж = F A , то тело плавает . Если сила тяжести F тяж меньше архимедовой силы F A , то тело будет подниматься из жидкости, всплывать, т. е. если F тяж < F A , то тело всплывает.

Если вы не умеете плавать, вам на помощь придут надувные резиновые игрушки. Эти игрушки обладают большой подъемной силой, потому что действующая на них сила тяжести намного меньше выталкивающей силы.

Итак, законы плавания тел всегда учитываются при изготовлении игрушек, поэтому они и сами плавают на воде, и нам помогают плавать.

3. Звуковые игрушки

Мы все живём в мире звуков. Где бы мы ни находились, нас сопровождают разные звуки. Совсем ещё маленький ребёнок, а уже гремит погремушкой. Это его первая игрушка, и она звуковая.

Звуки бывают разные: громкие и тихие, высокие и низкие. Чем чаще колеблется тело, тем выше звук .

Теперь посмотрите другую игрушку – «Кот в сапогах». Когда мы нажимаем на неё, воздух выходит из подушки, находящейся внутри игрушки, а когда мы её отпускаем – устремляется внутрь подушки, она постепенно распрямляется, воздух внутри неё колеблется, издавая звук.

«Говорящие» куклы умеют произносить «Мама». Причина этого – колебания воздуха внутри кожаной коробочки с отверстиями, которую помещают внутрь игрушки. При наклоне куклы грузик, находящийся в коробочке, падает, заставляя воздух в ней сжиматься и выходить в отверстия. Колебания воздуха сопровождаются звуком.

Причиной музыкальных звуков, издаваемых шарманкой, тоже является воздух внутри неё. Чтобы звук был громче, ящик шарманки делают большим и полым.

4. Гироскопические игрушки

Это юла или волчок – древнейшая народная игрушка. Такие волчки приводят в движение рукояткой, снабжённой ходовым винтом.

Попытки повалить быстро вращающийся волчок не удаются. Под действием толчка волчок лишь отскакивает в сторону и продолжает вращаться вокруг вертикальной оси.

В чем причина такой устойчивости вращения? Она тоже связана с одним из физических законов – законом сохранения момента количества движения. Попробуем установить волчок вертикально. Это нам не удаётся. Заставим волчок быстро вращаться, и он сразу становится устойчивым. Заметим, что волчок при этом описывает своей осью коническую поверхность. В этом и состоит секрет устойчивости волчка, а само это свойство сохранения устойчивости при вращении называют гироскопическим свойством.

5. Заводные игрушки

Внутри этих игрушек - пружина. Сжатая пружина обладает потенциальной энергией, за счет которой тело может совершать работу.

Когда мы заводим игрушку, поворачивая ключ, пружина внутри игрушки сжимается, увеличивается ее потенциальная энергия. Чем больше оборотов ключа мы сделаем, тем сильнее сожмем пружину, тем больший запас потенциальной энергии получит пружина. А теперь пора игрушку отпустить. Пружина внутри игрушки начинает раскручиваться, потенциальная энергия пружины превращается в кинетическую энергию игрушки. В основе работы этих игрушек лежит закон сохранения механической энергии.

А вспомните пружинные пистолеты с пулями-присосками. Когда мы вставляем пулю в пистолет, сжимается пружина, находящаяся внутри. Деформированная пружина обладает запасом потенциальной энергии, за счет которой при спуске курка начинается движение пули. В соответствии с законом сохранения механической энергии потенциальная энергия пружины превращается в кинетическую энергию пули-присоски. Можно объяснить и следующее за выстрелом явление присасывания пули к поверхности. Это явление можно объяснить существованием атмосферного давления. Когда присоска ударяется о поверхность, некоторая часть воздуха выбрасывается из-под присоски из-за этого удара. В результате силы атмосферного давления прижимают пулю-присоску к поверхности, т.к. атмосферное давление больше, чем давление под присоской.

6. Игрушки, действие которых основано на различном положении центра тяжести

В русском фольклоре эту игрушку иногда называют "Ванька-встанька".

Хорошо известен принцип действия популярной детской игрушки-"неваляшки" - эффект возвращения в одно и то же состояние достигается за счёт смещения центра тяжести. Благодаря этому у неё есть только одно положение устойчивого равновесия (на основании) и только одно положение неустойчивого равновесия (на голове). У каждого предмета есть центр тяжести.

"Центром тяжести каждого тела является некоторая расположенная внутри него точка - такая, что если за неё мысленно подвесить тело, то оно остается в покое и сохраняет первоначальное положение." ( Архимед)

Стоящий предмет (тело на опоре), не опрокидывается, если вертикаль, проведенная через центр тяжести, пересекает площадь опоры тела.

У неваляшки внутреннее устройство таково, что создает смещенный вниз центр тяжести. Поэтому такое положение равновесия является устойчивым: центр тяжести корпуса неваляшки и точка её опоры лежат на вертикали, причем расстояние между центром тяжести и точкой опоры, всегда наименьшее.

Самая простая неваляшка представляет собой круглый полый корпус, внутри которого в нижней части закреплен груз. В результате получается объемная фигура со смещенным относительно геометрического центра центром тяжести.

hello_html_2929840e.jpg

У Ваньки - Встаньки в нижней части находится тяжелый полушар. Центр тяжести полушара - точка С - при наклоне поднимается. Расстояние CD больше расстояния АС. Значит , равновесие в первом случае устойчиво.

Для тела, опирающего на одну точку, в состоянии равновесия, центр тяжести находится на одной вертикали с точкой опоры ( СА -вертикаль). При отклонении от положения равновесия возникает момент силы, возвращающий тело в равновесное состояние с наизнишим положением центра масс.

Обычный полый шар обладает безразличным равновесием: как бы его не положили, он будет находиться в состоянии покоя, т.к. центр тяжести такого тела всегда равноудален от точки опоры.

А полый шар со смещенным центром тяжести будет стремиться занять положение, при котором центр тяжести будет наиболее приближен к точке опоры. Тогда такой шар окажется в единственном для него положении устойчивого равновесия.

Для малышей, которые ещё не научились аккуратно кушать есть даже чашка-неваляшка.

Чашка - неваляшка с "носиком" и удобными ручками научит малыша, привыкшего к бутылочке, пить из чашки. Утяжеленное дно не позволяет чашке окончательно перевернуться, даже если ребенок неудачно ставит ее на стол. А носик кружки сделан так, что если ребенок и перевернет ее вверх дном, то из нее не выльется ни капельки. Когда малыш научится обращаться с чашкой, крышку с носиком для питья и утяжеленное дно можно будет снять.

При выполнении этой исследовательской работы мы узнали много нового, заинтересовались изучением физики и лучше стали в ней разбираться. Эта работа доступна людям всех возрастов, ведь для объяснения работы многих детских игрушек достаточно знаний школьного курса физики.

В результате исследования была выделена следующая классификация игрушек:

Плавающие игрушки в воде

Игрушки, действие которых основано на различном положении центра тяжести.

Предметом нашего проекта : является игрушка сделанная своими руками

1. Физика. 7 кл. 8 кл, 9 кл. учеб. для общеобразоват. учреждений/Ф. В. Перышкин., Е. М .Гутник. - 17 изд-е, стеоретип. м. : Дрофа, 2012.

2. Сикорук Л.Л. Физика для малышей.

3. Том Тит. Научные забавы: интересные опыты, самоделки, развлечения/пер. с франц. М., Издательский Дом Мещерякова, 2008.

4. Хилькевич С. С. Ю. "Физика вокруг нас", Библиотечка "Квант", выпуск 40, Москва, Наука, 1985.

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Столичный центр образовательных технологий г. Москва

Получите квалификацию учитель математики за 2 месяца

от 3 170 руб. 1900 руб.

Количество часов 300 ч. / 600 ч.

Успеть записаться со скидкой

Форма обучения дистанционная

Муниципальное бюджетное общеобразовательное учреждение Боготольская средняя общеобразовательная школа

«Физика в игрушках»

ученики 7 класса Восковский Данил,

учитель физики Радченко Л.А.

Изучая на уроке тему «Центр тяжести тела», мы узнали, что принцип действия игрушки «Ванька-встанька» или «неваляшка», можно объяснить с точки зрения физики. Оказалось, что играя, мы не задумываемся о том, что в основе действия многих игрушек лежат законы физики. Мы решили узнать, какие бывают игрушки? В какие игрушки играют наши одноклассники? Есть ли у них игрушки, сделанные своими руками? В какие игрушки играли наши предки? И попытаться объяснить принцип действия этих игрушек, основываясь на законы физики и физические явления. Для ответа на эти вопросы мы провели анкетирование в классе и столкнулись с такой проблемой, что большинство семиклассников играют в компьютерные игры, а игрушки, которые у них есть дома, принадлежат их младшим братьям и сестрам. А наши родители назвали не так много игрушек, в которые они играли, но у них были игрушки, которые, они мастерили сами. Поэтому мы решили провести систематизацию игрушек по принципу их действия, самостоятельно изготовить некоторые из них и показать одноклассникам, что игрушки, сделанные своими руками, могут быть интереснее, чем компьютерные игры.

Актуальность проекта: считаем свою работу актуальной, так как она повысит интерес к изучению физики, позволит систематизировать игрушки по принципу действия, также данный материал можно будет использовать на уроках при изучении законов и явлений, показывая практическую значимость физики.

Цель проекта: выяснить, какие физические явления и законы лежат в основе изготовления игрушек, в какие игрушки играли наши предки, изготовить некоторые игрушки своими руками.

Объект исследования - детские игрушки.

Предмет исследования - физические явления и законы, используемые в устройстве и работе детских игрушек.

Методы исследования: анкетирование, анализ, синтез, сравнение, классификация.

1. Систематизировать все знакомые нам и имеющиеся у нас дома игрушки по принципу действия.

2. Сделать презентацию "Физика в игрушках" для кабинета физики.

3. Изготовить игрушки своими руками.

Какие бывают игрушки? Что общего между мягкой игрушкой и паровозиком? Как физика помогает объяснить их устройство и принцип действия, не ломая и не разбирая игрушку? Какие физические законы и явления мы можем применить для объяснения действия той или иной игрушки?

Конечно, все виды игрушек мы рассмотреть сегодня не сможем, и будем говорить о тех игрушках, принцип действия которых мы уже можем понять.

Звуковые игрушки

Погремушка – это самая первая игрушка для малышей уже с первых дней их жизни. Погремушки представляют собой образные фигурки или геометрические формы на ручке, изготовленные из дерева, пластмассы или других материалов. При встряхивании раздается негромкий шум (звук). Во времена Древней Руси погремушки называли тарахтушками или побрякушками. Изготавливали их из дерева, бересты, костей животных, внутрь помещали горох, разные семена, камушки. А само слово «погремушка» произошло от выражения «погреметь у ушка».

Звук – это механические упругие волны, распространяющиеся в газах, жидкостях или твердых телах. Частота звуковых волн от 16 – 20 000 Гц. Распространение звука происходит в виде звуковых волн, которые распространяясь в упругой среде (воздух, жидкости, твердые тела) достигают нашего уха и приводят барабанную перепонку в колебательное движение. В результате у нас возникают определенные слуховые ощущения. Звуки бывают разные: громкие и тихие, высокие и низкие. Чем чаще колеблется тело, тем выше звук.

Магнитные игрушки

Это магнитные шашки и шахматы, магнитные буквы и цифры, магнитный конструктор, магнитная рыбалка, магниты на холодильник, магнитная доска. В этих игрушках используется свойство магнитов притягивать к себе некоторые железосодержащие материалы.

Магни́т – тело , обладающее собственным магнитным полем . Простейшим и самым маленьким магнитом можно считать электрон . Магнитные свойства всех остальных магнитов обусловлены магнитными моментами электронов внутри них.

Заводные игрушки

Внутри этих игрушек - пружина. Сжатая пружина обладает потенциальной энергией, за счет которой тело может совершать работу.

Когда мы заводим игрушку, поворачивая ключ, пружина внутри игрушки сжимается, увеличивается ее потенциальная энергия. Чем больше оборотов ключа мы сделаем, тем сильнее сожмем пружину, тем больший запас потенциальной энергии получит пружина. Отпускаем ручку, пружина внутри игрушки начинает раскручиваться, потенциальная энергия пружины превращается в кинетическую энергию игрушки. В основе работы этих игрушек лежит закон сохранения механической энергии.

Плавающие игрушки

Если погрузить в воду мячик и отпустить, то мы увидим, как он тут же всплывет. То же самое происходит и с другими телами (пробкой, щепкой). Какая сила заставляет их всплывать?

На тело, находящееся внутри жидкости, действуют две силы: сила тяжести,

направленная вертикально вниз, и архимедова сила, направленная

вертикально вверх. Если сила тяжести больше архимедовой силы , то тело будет опускаться на дно, тонуть. Если сила тяжести равна архимедовой силы , то тело может находиться в равновесии в любом месте, т. е. тело плавает . Если сила тяжести меньше архимедовой силы , то тело будет подниматься из жидкости, всплывать.

Итак, при изготовлении игрушек учитываются законы плавания тел, поэтому они и сами плавают на воде, и нам помогают плавать.

Игрушки, действие которых основано на различном положении центра тяжести.

Неваляшка появилась в России не так давно. Историки считается, что неваляшка пришла к нам из Японии. Эти игрушки стали праобразами известной игрушки «Ваньки-Встаньки». Первые русские деревянные неваляшки появились на ярмарке в начале XIX века. Тогда их называли «кувырканами». Кувырканы изображались в виде богатых купцов, разодетых в роскошные одеяния, а также клоунов (скоморохи) и девочек на шаре. Например, скоморох (клоун-жонглер) был очень популярным в то время. Клоун-скоморох придумывал сам свои песни и шутки. Скоморох выступал и как танцор, и как автор, и как музыкант, и как певец, и как шутник, и как фокусник. Для детей он был словно из мира волшебной сказки. А детям всегда нравились яркие и красочные персонажи. Поэтому на ярмарках особенной популярностью среди покупателей пользовался деревянный скоморох. Этого неваляшку выполняли в технике ручной росписи. Деревянный «Ванька-Встанька» - клоун-скоморох - расписывался яркими красками в традиционном русском стиле искусства росписи по дереву.

Самая простая неваляшка представляет собой полый круглый корпус, внутри которого в нижней части закреплен груз. В результате получается объемная фигура со смещенным относительно геометрического центра центром тяжести. Обычный полый шар обладает безразличным равновесием: как бы его не положили, он будет находиться в состоянии покоя, т.к. центр тяжести такого тела всегда равноудален от точки опоры. А полый шар со смещенным центром тяжести будет стремиться занять положение, при котором центр тяжести будет наиболее приближен к точке опоры. Тогда такой шар окажется в единственном для него положении устойчивого равновесия.

Пуговица «жужжалка»

Старинная забавная игрушка, в принципе действия которой работают силы инерции, силы упругости и даже аэродинамические силы – все вместе. Все очень просто! Берется большая – чем больше, тем лучше – пуговица, и через ее дырочки продевается веревочка, которая завязывается так, чтобы получилось веревочное кольцо. Если не торопясь тянуть веревку в стороны, плавно, без особых усилий, пуговица начнет крутиться, все быстрее и

быстрее. В тот момент, когда веревка раскрутится и начнет заворачиваться в

другую сторону, перестанем тянуть, немножко сведем руки. Только не слишком сильно, чтобы веревка была все время чуть-чуть натянута. Когда пуговица завернет веревочку в другую сторону и начнет останавливаться, опять потянем в разные стороны. Пуговица начнет раскручиваться в другую сторону. И так до бесконечности. Мы потихонечку, то тянем в стороны, то ослабляем натяжение – а пуговица крутится туда-сюда. Если веревочка достаточно длинная, а пуговица большая и тяжелая, то при вращении она издает приятный жужжащий звук, словно немножко фырчит! Вот и готова жужжалка.

Что же происходит?

Когда мы тянем закрученную веревку, мы заставляем ее раскручиваться, веревка передает свою энергию пуговице, и вся система начинает вращаться. Это работают силы упругости. Когда веревка раскрутится, в действие вступают силы инерции. Пуговица продолжает движение и уже сама начинает работать как мотор, закручивая веревку в другую сторону. Ну, а воздух, обтекающий вращающуюся пуговицу (это аэродинамические силы), завихряется в дырочках, и возникают волны, звук. Мы слышим глухое жужжание!

Дети многих поколений в СССР считали эту игру – переговоры по телефону из спичечных коробков забавной и увлекательной. На практике может быть применим только в идеальных условиях – нить телефона должна быть натянута и не должна касаться каких-либо препятствий, да и длина нити ограничена.

Через центры двух пустых спичечных коробков протягивают нить, закрепив ее с обеих сторон с помощью спичек. Натягивают нить, передают друг другу информацию. Для этого один ребенок, прижав коробок к губам, говорит; другой, приложив ухо ко второму коробку, слушает. Звук заставляет дрожать один коробок, «бежит» по нитке ко второму. Спичечный «телефон» работает по принципу настоящего телефона: там звук бежит по проводам. Звук передается при дрожании нитки, если нитка не дрожит, звук не передается, т.е. звук передается через колебания нити.

Село Богородское - родина замечательного народного промысла резных деревянных игрушек и скульптур. Кто из крестьян вырезал первую деревянную игрушку, уже никто не помнит, но более 300 лет из уст в уста передаются два интересных придания. Первое предание гласит: «Жила в селе Богородском крестьянская семья. Вот задумала мать позабавить ребятишек – вырезала из чурбачка забавную фигурку и назвала ее «аукав». Ребятишки поиграли с «аукой» и забросили ее за печку. Вот поехал муж крестьянки на базар, да и взял с собой «ауку» показать торгашам. «Ауку» тут же купили и еще игрушек заказали. Говорят, что с тех пор и началась резьба деревянных игрушек и стали они называться «богородской».

Все игрушки сделаны из липы, причём ошкуренное дерево сначала

выдерживают в течение трёх лет под навесом (для того, чтобы в процессе естественной сушки проявились все трещины). Потом целый ствол распиливают на части, а их уже разрубают радиально – они должны быть треугольными (основание треугольника становится основанием игрушки). Затем заготовку приносят в «зарубочную», где топором снимается лишнее.

Следующий этап – обрезка специальным богородским ножом.

Потом деревянную игрушку доводят до совершенства разными стамесками. Гладкие поверхности обрабатываются тонкой наждачной бумагой. В конце покрывают готовое изделие воском и лаком или цветными морилками.

Особенно интересны подвижные Богородские игрушки.

Некоторые фигурки укреплены на параллельно расположенных подвижных планках, скрепленных гвоздиками. Так сделана, например, игрушка «Кузнецы». Кузнецы Мишка и Мужик – главные герои богородского промысла, они бьют молоточками по наковальне, если поочерёдно двигать планки.

Когда известному французскому скульптору Огюсту Родену подарили популярную Богородскую игрушку "Кузнецы", он сказал: «Народ, который создал эту игрушку - великий народ».

И игрушка «Курочки» - тоже долгожитель. Ею играли дети еще во времена Пушкина и Лермонтова. Но и в наше время при всем изобилии игрушек незатейливая игра с расписными курочками по-прежнему радует и детей, и взрослых. Натягивается веревочка – наклоняется головка курочки. Стоит слегка покачать игрушку в руках, как курочки начнут клевать зернышки. Раскрутишь посильнее, и курочки стучат клювами дружнее. Чем сильнее качаешь игрушку - тем активнее курочки клюют.

Вывод: Изучив принцип действия игрушек, мы увидели, что законы физики находят широкое применение. Сделанную нами презентацию можно использовать на уроках физики при изучении физических законов и явлений. А если мастерить игрушки самим по готовым чертежам или придумывать их самому, гораздо интереснее, чем сидеть целыми днями за компьютером.

1. Дмитриев А.С. Как понять сложные законы физики. 100 простых и увлекательных опытов для детей и их родителей. – Этерна. 2009г.

Нажмите, чтобы узнать подробности

Вашему вниманию представлен проект по физике, а также включающий в себя экологические аспекты, сделанный в рамках урочной деятельности с учениками 7 класса. Зипированный файл включает в себя сам проект, красочную презентацию и рецензию. Эта работа стала победителем в районной научно-практической конференции

Просмотр содержимого документа
«Проект_Вторая жизнь пластикового мусора в опытах по физике»

МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ НЕМЧИНОВСКИЙ ЛИЦЕЙ

(1 43026, Московская область, Одинцовский район,
р.п. Новоивановское, ул. Агрохимиков, д. 6)

Небо и Земля (физика)

«Дадим вторую жизнь пластиковому мусору в простых опытах по физике»

учащиеся 7 В класса

(1 43026, Московская область,
Одинцовский район,
р.п. Новоивановское,
ул. Агрохимиков, д. 6)

Лозенко Марина Ивановна,
учитель информатики, физики

МБОУ Немчиновский лицей

Название проекта: «Дадим вторую жизнь пластиковому мусору в простых опытах по физике».

Авторы проекта: Журавкова Лана, Крючкова Валерия, Журавкова Карина

Руководитель проекта: Лозенко Марина Ивановна, учитель информатики и физики

Образовательное учреждение: МБОУ «Немчиновский лицей»

Год разработки: 2019 год

по виду: исследовательский

по содержанию: метапредметный

по длительности: долгосрочный (8 недель)

по количеству участников проекта: групповой

Актуальность: пластиковый мусор несет глобальную проблему, решение которой стоит на одном из первых мест.

Основополагающий вопрос (проблема): применим ли пластиковый мусор для моделирования простых приборов по физике?

Вопросы, направляющие проект (проблемные вопросы):

Какие приборы нужны для демонстраций по теме «Давление»?

Какой пластиковый мусор пригоден для моделирования приборов?

Как привлечь интерес других учеников к нашему проекту?

Цель: привлечение внимания учеников к проблеме пластиковых отходов, а также развитие умений и навыков проектной работы.

Методы и приемы работы над проектом: аналогия (модель легких), ассоциация (в конструировании приборов), бионический метод (работа легких и диафрагмы), метод наводящих вопросов, эксперимент, моделирование, анализ работы приборов.

Результаты работы: в ходе выполнения проекта мы использовали пластиковые отходы. Нами были сконструированы приборы для демонстрации и объяснения явлений и законов, связанных с темой «Давление». При испытании приборов анализировалось наблюдаемое явление и ему давалось объяснение на основе изученного на уроках физики теоретического материала. Все приборы несут наглядную информацию и могут быть полезны для проведения демонстраций на уроках физики для лучшего понимания изучаемой темы. Модель работы легких также можно использовать на уроках по анатомии. А модель воздушного колокола пригодится на уроках биологии при рассказе о пауке-серебрянке.

Выводы: в результате работы над проектом мы лучше разобрались с темой «Давление», увидели, как «работают» физические законы на практике, сконструировали из пластиковых отходов замечательные приборы, которые пригодятся нашему учителю для проведения демонстраций и экспериментов на уроках физики.

Паспорт проекта 2

Основная часть 7

Теоретическое обоснование 7

Практическая часть 8

ОПЫТ 1. Закон Паскаля 8

ОПЫТ 2. Сообщающиеся сосуды 10

ОПЫТ 3. Модель работы легких 11

ОПЫТ 4. Исследование гидростатического давления 12

ОПЫТ 5. Картезианский водолаз 13

ОПЫТ 6. Водолазный колокол 14

Список литературы 16

«Человечество не погибнет в атомном кошмаре — оно задохнется в собственных отходах» Нильс Бор

Тема, посвященная пластиковому мусору и конструированию из него приборов для физического эксперимента, выбрана нами не случайно. Как известно пластик практически не разлагается. Проблема пластиковых отходов на данный момент стоит очень остро во всем мире. Существуют множество разнообразных программ по вторичному использованию изделий из пластика. Мы также не остались в стороне от этой идеи и решили из пластиковых отходов сделать приборы для демонстрации различных опытов на уроках физики. Так как в данный момент мы являемся учениками 7 класса и усиленно изучаем тему «Давление», то и наши приборы и опыты будут посвящены именно этой теме. Актуальность выбранной темы лучше всего обосновал великий ученый-физик Нильс Бор. Его слова мы выбрали в качестве эпиграфа к нашему проекту. Мы не желаем задохнуться в своих отходах и погибнуть. Мы ищем пути вторичного использования мусора. И как же хорошо, что этот «мусор» помогает нам лучше разобраться в такой сложной, но при этом ужасно интересной науке физике!

Гипотеза: из пластиковых отходов получаются замечательные приборы, пригодные для демонстрации физических явлений, которые можно применять на уроках физики при изучении темы «Давление» в 7 классе.

Цель: дать новую жизнь пластиковому мусору в простых опытах по физике.

Изучить научную и популярную литературу по теме «Давление»;

Составить систему доступных и простых опытов с использованием пластикового мусора;

Провести опыты, демонстрирующие законы физики по теме «Давление»;

Сделать приборы, вызывающие затруднение в понимании теоретического материала по физике по теме «Давление»;

Сделать приборы, отсутствующие в лаборатории;

Дать рекомендации по постановке опытов.

Методы работы над проектом: аналогия, бионический метод, эксперимент, моделирование, анализ.

Практическая значимость проекта: работа над данным проектом решает несколько важных проблем. Во-первых, острую проблему вторичного использования пластиковых отходов (глобальная проблема). Во-вторых, проблему оснащенности кабинетов физики приборами для демонстраций.

Этапы работы над проектом:

Подготовительный (первая неделя)

Определение проблемы, темы и цели проекта в ходе совместной деятельности педагога и обучающейся.

Планирование (вторая-третья неделя)

Определение источников информации, способов сбора и анализа информации, вида продукта и возможных форм презентации результатов проекта, сроков презентации

Практический (4-5 неделя)

Самостоятельная работа учащихся по своим задачам проекта. Промежуточные обсуждения полученных данных.

Оформление проекта (шестая-седьмая неделя)

Анализ и синтез данных; формулирование выводов; подготовка презентационных материалов; оформление работы и презентации.

Заключительный (восьмая неделя)

Защита проекта. Оценка качества выполнения проекта.

Теоретическое обоснование

Физика – новый для нас предмет. Много явлений мы наблюдали в окружающем нас мире, но не знали, как их объяснить. Порой, они казались нам настоящим волшебством. Но в ходе изучения физических явлений, их научного обоснования, мы поняли, что любое «волшебство» можно объяснить, используя физические законы.

Как интересно было открыто атмосферное давление! Все знают, что поверхность Земли окружена слоем воздуха. Он располагается от поверхности планеты на десятки и сотни километров вверх. Окружающий нас воздух настолько невесом, прозрачен и незаметен, что люди даже не сразу поняли, что он оказывает постоянное воздействие на всё живое. Впервые на это обратили внимание в 1640 году. Поводом послужил неработающий фонтан на террасе дворца герцога Тосканского. Воду никак не удавалось поднять на значительную высоту. Объяснение такому явлению предложил итальянский ученый Эванджелиста Торричелли. Мы тоже докажем существование атмосферного давления с помощью сделанного нами прибора.

А французский ученый Блез Паскаль целых шесть лет наблюдал за струйками воды, бьющими из отверстий прибора, известного сейчас под названием «шар Паскаля», прежде чем смог сформулировать свой закон, на основании которого были сконструированы многие важные устройства, например, гидравлический пресс, подъемник тяжелых машин, тормозные системы и многие другие. В честь этого великого ученого получила название единица измерения давления паскаль (Па).

Мы тоже, как эти великие ученые-физики, будем познавать науку через эксперимент. К тому же все установки сделаем сами из пластикового мусора. Все приборы будем конструировать таким образом, чтобы они не несли опасность окружающим, были удобны в использовании и имели практическую значимость.

ОПЫТ 1. Закон Паскаля

Цель: продемонстрировать закон Паскаля и действие атмосферного давления.

Оборудование: пластиковая бутылка, шило, два использованных шприца, трубка от капельницы.

Первая установка (имитация шара Паскаля):

Схема установки





Готовое изделие


Результат: наблюдаем вытекание воды из отверстий в виде одинаковых струек при надавливании на бутылку.

Анализ: сила давления, производимая на бутылку, действует на воду, находящуюся в бутылке. Это давление, по закону Паскаля, передается в каждую точку жидкости без изменения.

Вторая установка:

Схема установки















Трубка от капельницы

Готовое изделие


Результат: при нажатии на поршень одного шприца наблюдаем движение поршня другого шприца.

Анализ: давление, производимое на воздух, находящийся в системе, со стороны первого шприца, передается без изменения на поршень второго шприца. Если систему заполнить водой, будем наблюдать действие закона Паскаля в воде.

Также данный прибор может демонстрировать наличие атмосферного давления. При вытягивании поршня одного шприца, наблюдаем, как атмосферное давление «заталкивает» внутрь поршень другого шприца.

ОПЫТ 2. Сообщающиеся сосуды

Цель: показать расположение поверхности однородной жидкости в сообщающихся сосудах на одном уровне.

Оборудование: нижние части от пластиковых бутылок разных сечений, резиновая трубка.

Схема установки







две или три пластиковые бутылки

Готовое изделие


Результат: уровни воды в сосудах оказались на одном уровне.

Анализ: в сообщающихся сосудах любой формы поверхности однородной жидкости устанавливаются на одном уровне (при условии, что давление воздуха над жидкостью одинаково).

Также данный прибор позволяет демонстрировать причину возникновения родников. Если наполнить водой бутылку меньшего сечения, наблюдаем, как бьет «ключ» в бутылке большего сечения.

ОПЫТ 3. Модель работы легких

Цель: показать простейшую модель работы легких.

Оборудование: пластиковая бутылка (верхняя часть), два шарика.

Схема установки












пластиковая бутылка (верхняя часть)

целый шарик (имитация легких)

часть резиновой перчатки (имитация работы диафрагмы)

Готовое изделие



Результат: наблюдаем наполнение шарика (легких) воздухом.

Анализ: резиновая пленка от шарика играет роль специальной мышцы - диафрагмы, шарик - это легкое, а сама бутылка - это герметичная грудная полость. Работой мышц диафрагмы мы увеличиваем объем грудной полости, в ней снижается давление, благодаря чему в легкие поступает воздух. И наоборот, когда диафрагма движется вверх, объем грудной клетки уменьшается, давление увеличивается и воздух изгоняется из легких.

ОПЫТ 4. Исследование гидростатического давления

Цель: показать зависимость давления от высоты столба жидкости.

Оборудование: пластиковая бутылка с проделанными в ней отверстиями на разной высоте, кювета, скотч.

Схема установки





трубочки от гелевых ручек

Готовое изделие


Результат: вода из отверстия, расположенного ниже, более интенсивная.


Анализ: давление жидкости на дно и стенки сосуда зависит от высоты столба жидкости (чем больше высота, тем больше давление жидкости p = gh ).

ОПЫТ 5. Картезианский водолаз

Открытие этого опыта приписывают французскому ученому Рене Декарту (по-латыни его фамилия - Картезий). Опыт был так популярен, что на его основе создали игрушку, которую и назвали «Картезианский водолаз».

Читайте также: