Игрушки с низким центром тяжести

Обновлено: 02.05.2024

Продолжаем делать поделки, в основе действия которых лежат законы равновесия. Я уже показывала в блоге наших белочку, бабочку, птичку из картошки и Ваньку-Встаньку. А теперь сделаем балерину из бумаги. Как и предыдущие игрушки, эта балерина не простая — она умеет грациозно балансировать на тонкой ниточке или на кончике пальца. А все из-за того, что у игрушки смещен центр тяжести. Основной вес конструкции находится не над опорой, а под опорой, что позволяет балерине стоять и не падать.

Описание этой балерины мы нашли в старой, еще советской книге Л.А.Горева «Занимательные опыты по физике». И очень захотели попробовать сделать такую игрушку своими руками. Оказывается, это очень быстро и очень просто! Особенно если упростить конструкцию и воспользоваться подручными материалами. Дальше как обычно, небольшой мастер-класс.

На картоне рисуем фигуру балерины (или любую другую картинку на ваш вкус) высотой около 10-11 см. При желании можно скачать мой рисунок, распечатать его на обычной офисной бумаге и наклеить на картонную основу.


Шаблон для скачивания.
Нажмите на картинку мышкой — она откроется в новом окне в полную величину.
После этого скопируйте изображение к себе на компьютер и распечатайте.

После этого делаем для нее балансир: на концах проволочки заворачиваем петельки и в них продеваем по три скрепки с каждого конца. После этого середину проволоки оборачиваем вокруг ног балерины так, чтобы концы свисали вниз. После надо будет чуть-чуть раздвинуть проволоку в стороны, опытным путем добиваясь большей устойчивости игрушки.

А теперь проводим эксперимент. Ставим балерину на какую-нибудь тонкую опору — нитку, проволоку, палочку, — она стоит и не падает!

Многие детские игрушки позволяют показать те или иные физические принципы, явления, законы.

Сегодня обратимся к понятиям центр тяжести (центр масс), устойчивость, условие устойчивого равновесия.

1. Ванька-встанька

« …Мой характер не сломить,
меня никак не положить,
Хоть старайся, расстарайся,
никогда тому не быть».

Если при достаточно малом отклонении тела от положения равновесия возникают силы, возвращающие его обратно, то такое равновесие называют устойчивым .

Ванька-встанька (или неваляшка) возвращается всегда в вертикальное положение – значит, это есть положение его устойчивого равновесия. Для тела, находящегося в состоянии устойчивого равновесия, выполняется условие: центр тяжести тела занимает самое низкое возможное положение . При попытке вывести тело из положения устойчивого равновесия, центр тяжести поднимается.

У Ваньки-встаньки в нижней части находится тяжёлый полушар. Центр тяжести полушара – точка С – при наклоне приподнимается. В самом деле, расстояние CD больше расстояния АС. Значит, равновесие в первом случае устойчиво. Пунктиром изображён воображаемый шар, центр которого (точка С) совпадает с центром тяжести полушара.

Для тела, опирающегося на одну точку, в состоянии равновесия центр тяжести находится на одной вертикали с точкой опоры (на первом рисунке СА – вертикаль). ( Замечание. Рисунок взят из «Элементарного учебника физики» под ред. Ландсберга, но исправлена неточность. У Ландсберга отрезок СВ нарисован вертикальным (B – точка касания полушара и плоскости), что может быть только в состоянии равновесия. )

При отклонении от положения равновесия возникает момент силы, возвращающий тело в равновесное состояние с наинизшим положением центра масс. Зелёная стрелка - реакция опоры (сила, с которой плоская поверхность опоры действует на полушар, синяя - сила тяжести (сила, с которой Земля притягивает полушар). Тело будет находиться в состоянии равновесия, когда обе эти силы, будучи противоположно направленными и равными по величине, будут действовать вдоль одной прямой.

Многие пытались удерживать в равновесии на ладони или кончике пальца бильярдный кий, школьную указку или большую линейку, как это показано на рисунке. ( Рисунок взят отсюда: Хилькевич С. С.Ю «Физика вокруг нас», Библиотечка «Квант», Выпуск 40. Москва, Наука, 1985 )

Чесова Татьяна Григорьевна

Цель работы: изучить основы понятия о равновесии, центре тяжести и точке опоры.

Задачи: понять, что такое центр тяжести, и как знания о нем используются. Проделать опыты, демонстрирующие разные виды равновесия. Как определять центр тяжести плоской фигуры?

Вырежьте из картона фигуру произвольной формы и проколите в нескольких местах хотя бы пару отверстий (для большей точности лучше ближе к краям). Вколите в вертикальную деревянную стену иголку и повесьте на ней фигуру за любое отверстие. Помните: фигурка должна свободно качаться на игле! Сделайте отвес из тонкой нити и груза, завяжите петлю на свободном конце нити, и повесьте его на ту же иглу. Отвес будет указывать вертикальное направление на подвешенной фигуре. Отметьте на фигурке вертикальное направление нити. Снимите фигуру, подвесьте её за другое отверстие и снова отметьте уже новое направление нити отвеса. Точка пересечения вертикальных линий укажет положение центра тяжести данной фигуры.

Простая на первый взгляд детская игрушка неваляшка на самом деле является гениальной инженерной конструкцией. Подобное решение нашло свое применение в судостроении. Для вас мы решили секрет неваляшки, который всегда мучил многих детей. В нижней части сферы находится цилиндр, выполненный из плотного картона. На дне цилиндра установлен балласт, в который по кругу вставлены металлические прутья. В центре всей этой конструкции на проволоке висит металлическая круглая шайба, которая при ударе о прутья создает звук.

Так почему же неваляшка никогда не падает? Ответ прост. Центр тяжести у этой игрушки расположен в ее самой нижней части, она фактически стоит на нём. По этой простой причине они и обладают такой удивительной устойчивостью. А теперь сделаем балерину из бумаги. Как и предыдущие игрушки, эта балерина не простая - она умеет грациозно балансировать на тонкой ниточке или на кончике пальца. А все из-за того, что у игрушки смещен центр тяжести. Основной вес конструкции находится не над опорой, а под опорой, что позволяет балерине стоять и не падать. Заключение.

Я рассмотрела, что такое равновесие. Какие бывают виды равновесия.

Из опытов убедилась, что от положения центра тяжести зависит равновесие предмета.

ВложениеРазмер
Исследовательская работа. Научно - техническое творчество 220.41 КБ

Предварительный просмотр:

5978550bb261ff677e0e8433.jpg

Однажды в кафе нам предложили купить удивительную игрушку. Это была пирамида, и птичка, которая держалась только кончиком клюва.

Одна единственная точка опоры и тело, расположенное перпендикулярно земле.
На первый взгляд кажется, что все это какой-то технический или визуальный фокус, и все это очень эфемерно, и рухнет сразу же, стоит только задеть. Но на самом деле, конструкция весьма надежна, может быстро вращаться вокруг собственной оси, да и сбросить птичку с постамента не так легко. Мне стало очень интересно, как это работает. Тогда я стала искать информацию в интернете и книгах. Оказалось, все дело в физических законах. Кажется, что игрушка их нарушает. В действительности же, строго им следует. Центр тяжести птички приходится аккуратно на клюв. Сделана игрушка из легкого материала.

Поэтому целью моей работы стало: изучить основы понятия о равновесии, центре тяжести и точке опоры.

Задачами этой работы являются:

  1. Понять, что такое центр тяжести, и как знания о нем используются.
  2. Проделать опыты, демонстрирующие разные виды равновесия.
  3. Изготовить игрушки, действие которых основано на законах равновесия.

У каждого предмета есть центр тяжести . И от его положения зависит очень многое. Например, устоит ли башня или рухнет, может ли человек сохранить равновесие и многое другое. Например, у однородной палки (такой, как, например, черенок лопаты) он находится точно на ее середине, у крышки кастрюли — в ее центре. Для того чтобы горизонтально подвесить палку, понадобятся самое маленькое две нитки, привязанные к ее концам, но, воспользовавшись центром тяжести, можно обойтись и одной ниткой, привязанной к самой середине палки. Чтобы крышка кастрюли висела горизонтально, тоже вместо нескольких ниток достаточно одной, привязанной в ее центре (за ушко).

От положения центра тяжести зависит равновесие предмета. Если центр тяжести находится ниже точки опоры и точно под ней, будет самое устойчивое равновесие.

Дело в том, что все тела стремятся принять положение равновесия. Если из центра тяжести тела провести линию, перпендикулярную полу, то в случае, когда линия выходит за границы опоры тела, тело упадёт. Чем больше площадь опоры, чем ближе расположен центр тяжести тела к центральной точке площади опоры и центральной линии центра тяжести, тем более устойчивым будет положение тела. Например, центр тяжести знаменитой Пизанской башни расположен всего в двух метрах от середины её опоры. А падение случится лишь тогда, когда это отклонение составит около 14 метров. Центр тяжести тела человека находится примерно на 20,23 сантиметра ниже пупка. Воображаемая линия, проведённая отвесно из центра тяжести, проходит ровно между ступнями.

Равновесие бывает неустойчивым , безразличным и устойчивым .

Неустойчивое равновесие будет тогда, когда смещение тела на небольшое расстояние приводит к его движению. Например, если тронуть шарик, лежащий на вершине горки, то шарик скатится вниз и не сможет вернуться в прежнее положение.

https://xn--j1ahfl.xn--p1ai/data/images/u245387/t1550575673aa.jpg

Шарик в состоянии неустойчивого равновесия

Безразличное равновесие, если тело при смещении на небольшое расстояние так и останется в нем. Например, если сдвинуть шарик, лежащий на ровной поверхности, то он будет теперь спокойно лежать на новом месте.

https://xn--j1ahfl.xn--p1ai/data/images/u245387/t1550575673ab.jpg

Шарик в состоянии безразличного равновесия

А устойчивое равновесие это когда при смещении тела на небольшое расстояние оно стремиться принять прежнее положение (например, мячик, который лежит в ямке, будет все время скатываться на ее дно). Равновесие устойчиво, если центр тяжести тела занимает самое низкое положение из всех возможных соседних положений.

https://xn--j1ahfl.xn--p1ai/data/images/u245387/t1550575673ac.jpg

Шарик в состоянии устойчивого равновесия

СОРЕВНОВАНИЕ ДВУХ КАРАНДАШЕЙ

Возьмите два граненых карандаша и держите их перед собой параллельно, положив на них линейку. Начните сближать карандаши. Сближение будет происходить поочередными движениями: то один карандаш движется, то другой. Даже если вы захотите вмешаться в их движение, у вас ничего не получится. Они все равно будут двигаться по очереди.

rav14.jpg

Почему это происходит? Как только на одном карандаше давление стало больше и трение настолько возросло, что карандаш дальше двигаться не может, он останавливается. Зато второй карандаш может теперь двигаться под линейкой. Но через некоторое время давление и над ним становится больше, чем над первым карандашом, и из-за увеличения трения он останавливается. А теперь может двигаться первый карандаш. Так, двигаясь по очереди, карандаши встретятся на самой середине линейки у ее центра тяжести. В этом легко убедиться по делениям линейки.

ОПЫТ С НЕУСТОЙЧИВЫМ РАВНОВЕСИЕМ

Равновесие будет устойчивым, если центр тяжести находится ниже точки опоры и точно под ней. Это значит, что, если отвесная линия проходит через точку опоры или подвеса и через центр тяжести, уже можно надеяться, что равновесие будет обеспечено.

rav13.jpg

Попробуем поставить карандаш на острие. Можно возиться хоть целый день. И все-таки есть очень простой способ заставить карандаш стоять. Это старинный, очень наглядный опыт. Зачиним карандаш, чтобы у него был острый конец, и немного выше конца воткнем полураскрытый перочинный нож, раскрытый не до конца. На рисунке ясно видно, как это сделать. Поставим острие карандаша на указательный палец, и карандаш будет стоять на пальце, слегка покачиваясь. Раскрывая нож больше или меньше, можем устанавливать карандаш не только прямо, но и наклонно. И все равно он не будет падать, даже если его толкнуть. Немножко покачается —и останется стоять на острие! Почему же карандаш без ножа падает, а с ножом стоит? Ведь в обоих случаях карандаш опирается на острие. Это его точка опоры. Но в первом случае точка опоры находилась в самом низу. А во втором —под ней висел перочинный нож. Ясно, что дело здесь именно в ноже. Если карандаш наклонится и начнет падать —нож будет подниматься вверх. Но ведь нож тяжелее, он тянет вниз и заставляет карандаш снова выпрямиться. Где находится центр тяжести карандаша и перочинного ножа? Ответ простой: на пересечении отвесной линии, проведенной через точку опоры и рукоятку ножа. То есть в самой рукоятке, значительно ниже точки опоры.

rav12.jpg

В своем труде "О равновесии плоских тел" Архимед употреблял понятие центра тяжести. Видимо, оно впервые было введено неизвестным предшественником Архимеда или же им самим, но в более ранней, не дошедшей до нас работе. Прошло 17 веков и Леонардо да Винчи сумел найти центр тяжести тетраэдра. Он же, размышляя об устойчивости итальянских "падающих" башен, в том числе - Пизанской, пришел к "теореме об опорном многоугольнике".

Как определять центр тяжести плоской фигуры?


http://class-fizika.narod.ru/van/93.jpg

Вырежьте из картона фигуру произвольной формы и проколите в нескольких местах хотя бы пару отверстий (для большей точности лучше ближе к краям). Вколите в вертикальную деревянную стену иголку и повесьте на ней фигуру за любое отверстие. Помните: фигурка должна свободно качаться на игле! Сделайте отвес из тонкой нити и груза, завяжите петлю на свободном конце нити, и повесьте его на ту же иглу. Отвес будет указывать вертикальное направление на подвешенной фигуре. Отметьте на фигурке вертикальное направление нити. Снимите фигуру, подвесьте её за другое отверстие и снова отметьте уже новое направление нити отвеса. Точка пересечения вертикальных линий укажет положение центра тяжести данной фигуры.

Простая на первый взгляд детская игрушка неваляшка на самом деле является гениальной инженерной конструкцией. Подобное решение нашло свое применение в судостроении. Для вас мы решили секрет неваляшки, который всегда мучил многих детей. В нижней части сферы находится цилиндр, выполненный из плотного картона. На дне цилиндра установлен балласт, в который по кругу вставлены металлические прутья. В центре всей этой конструкции на проволоке висит металлическая круглая шайба, которая при ударе о прутья создает звук.

Так почему же неваляшка никогда не падает? Ответ прост.

i.jpg

Центр тяжести у этой игрушки расположен в ее самой нижней части, она фактически стоит на нём. По этой простой причине они и обладают такой удивительной устойчивостью.

Как применяют знания о равновесии в судостроении, строительной технике.

Судно не опрокидывается, если в трюмах, расположенных ниже поверхности воды, лежат грузы. Чем больше грузов, тем корабль устойчивее. Так как центр тяжести ниже точки опоры.

Подъёмный кран не опрокидывается, поднимая грузы, так как платформа-противовес тяжелая и большая. Площадь опоры и центр тяжести расположены рядом друг с другом. Значит, система находится в устойчивом равновесии.

А теперь сделаем балерину из бумаги. Как и предыдущие игрушки, эта балерина не простая - она умеет грациозно балансировать на тонкой ниточке или на кончике пальца. А все из-за того, что у игрушки смещен центр тяжести. Основной вес конструкции находится не над опорой, а под опорой, что позволяет балерине стоять и не падать.

Для того, чтобы сделать балерину, нам понадобится:

2. Кусочек медной проволоки длиной около 25 см.

3. Канцелярские скрепки - 6 шт.

Я рассмотрела, что такое равновесие. Какие бывают виды равновесия.

Из опытов убедилась, что от положения центра тяжести зависит равновесие предмета. Равновесие устойчивое в том случае, если через центр тяжести и точку опоры провести вертикальную линию, и центр тяжести будет под точкой опоры или они будут расположены как можно ближе друг к другу.

Я смогла уравновесить различные предметы, зная законы равновесия.

Мне стал понятен принцип работы неваляшки, балансирующей птички. Я узнала, как люди научились применять эти знания в быту, на стройке, в кораблестроении, в цирке и во многих и многих отраслях.

Только что я рассказывала о том, как мы проводили мастер-класс по изготовлению научных игрушек на фестивале «Мастерская чудес«. И одна из игрушек, которую мы показывали на празднике, была бабочка-балансир (видела эту идею у Сергея Пархоменко в ЖЖ). При всей простоте изготовления, бабочка эта не простая, а волшебная! Она умеет на лету держаться своим хоботком и не падать. Секрет такого ее поведения прост: как и у всех подобных игрушек-балансиров, центр тяжести этой конструкции находится под опорой, на которой стоит хоботок. Поэтому бабочку никуда не «перевешивает» и она легко удерживается в таком положении устойчивого равновесия. (что это такое я уже рассказывала, когда мы делали яйцо Ваньку-Встаньку).

Научная игрушка своими руками

1. Рисуем на бумаге бабочку (форма крыльев роли практически не играет), раскрашиваем ее и вырезаем по контуру.

Для простоты я выкладываю шаблоны нашей бабочки — вы можете сохранить рисунки к себе на компьютер и распечатать их. Первая бабочка-раскраска. А вторую можно раскрасить, проявив свою фантазию. Выбирайте, какая вам больше нравится 🙂

бабочка - детская поделка из бумаги
Шаблон для распечатки (кликните мышкой, чтобы открылся в полном размере)
как сделать бабочку из бумаги
Шаблон для распечатки (кликните мышкой, чтобы открылся в полном размере)

2. После того, как бабочка готова, делаем ей хоботок: берем одну из скрепок, разгибаем ее. С одного конца должен остаться «носик» в виде буквы «Г». С другого делаем петельку так, чтобы она оказалась в перпендикулярной плоскости по отношению к «носику». Петелька нужна затем, чтобы было легче приклеивать скрепку к бабочке и чтобы она не проворачивалась потом в процессе эксплуатации.

Поделка из бумаги для детей - бабочка
Фиксируем скрепку на изнаночной стороне бабочки скотчем

4. Большинство детей думают, что этого уже достаточно, чтобы бабочка сидела на пальце. Попросите на этом этапе ребенка попробовать удержать бабочку в равновесии. Это сделать невозможно — бабочка падает вниз. Надо что-то придумать, чтобы уравновесить бабочку. Для этого нам и понадобятся остальные скрепки (поэкспериментируйте с их количеством: у нас иногда хватало и по одной скрепки на каждое крыло, а иногда нужно было по две).

Когда мы прицепим скрепки на кончики крыльев, они отвиснут вниз — и бабочка теперь будет сидеть ровно. Это все равно, что уравновесить весы — теперь с обоих сторон от пальца, на который опирается кончик хоботка, вес равный. Поэтому бабочка и балансирует на опоре.

Теперь все получится — можно демонстрировать этот опыт в качестве самодельного фокуса, чтобы развлечь ребенка. Благо, делается бабочка очень быстро и просто — даже трехлетний малыш справится с заданием раскрасить ее и нацепить на крылышки скрепочки.

Опыты и эксперименты по физике для детей

А вот тут можно посмотреть, как сделать еще другие игрушки-балансиры : Белочку, балерину и Птичку из картошки.

Другие самодельные игрушки, иллюстрирующие разные физические законы, можно увидеть в рубрике «Научные игрушки«.

Только что я рассказывала о том, как мы проводили мастер-класс по изготовлению научных игрушек на фестивале «Мастерская чудес«. И одна из игрушек, которую мы показывали на празднике, была бабочка-балансир (видела эту идею у Сергея Пархоменко в ЖЖ). При всей простоте изготовления, бабочка эта не простая, а волшебная! Она умеет на лету держаться своим хоботком и не падать. Секрет такого ее поведения прост: как и у всех подобных игрушек-балансиров, центр тяжести этой конструкции находится под опорой, на которой стоит хоботок. Поэтому бабочку никуда не «перевешивает» и она легко удерживается в таком положении устойчивого равновесия. (что это такое я уже рассказывала, когда мы делали яйцо Ваньку-Встаньку).

Научная игрушка своими руками

1. Рисуем на бумаге бабочку (форма крыльев роли практически не играет), раскрашиваем ее и вырезаем по контуру.

Для простоты я выкладываю шаблоны нашей бабочки — вы можете сохранить рисунки к себе на компьютер и распечатать их. Первая бабочка-раскраска. А вторую можно раскрасить, проявив свою фантазию. Выбирайте, какая вам больше нравится 🙂

бабочка - детская поделка из бумаги
Шаблон для распечатки (кликните мышкой, чтобы открылся в полном размере)
как сделать бабочку из бумаги
Шаблон для распечатки (кликните мышкой, чтобы открылся в полном размере)

2. После того, как бабочка готова, делаем ей хоботок: берем одну из скрепок, разгибаем ее. С одного конца должен остаться «носик» в виде буквы «Г». С другого делаем петельку так, чтобы она оказалась в перпендикулярной плоскости по отношению к «носику». Петелька нужна затем, чтобы было легче приклеивать скрепку к бабочке и чтобы она не проворачивалась потом в процессе эксплуатации.

Поделка из бумаги для детей - бабочка
Фиксируем скрепку на изнаночной стороне бабочки скотчем

4. Большинство детей думают, что этого уже достаточно, чтобы бабочка сидела на пальце. Попросите на этом этапе ребенка попробовать удержать бабочку в равновесии. Это сделать невозможно — бабочка падает вниз. Надо что-то придумать, чтобы уравновесить бабочку. Для этого нам и понадобятся остальные скрепки (поэкспериментируйте с их количеством: у нас иногда хватало и по одной скрепки на каждое крыло, а иногда нужно было по две).

Когда мы прицепим скрепки на кончики крыльев, они отвиснут вниз — и бабочка теперь будет сидеть ровно. Это все равно, что уравновесить весы — теперь с обоих сторон от пальца, на который опирается кончик хоботка, вес равный. Поэтому бабочка и балансирует на опоре.

Теперь все получится — можно демонстрировать этот опыт в качестве самодельного фокуса, чтобы развлечь ребенка. Благо, делается бабочка очень быстро и просто — даже трехлетний малыш справится с заданием раскрасить ее и нацепить на крылышки скрепочки.

Опыты и эксперименты по физике для детей

А вот тут можно посмотреть, как сделать еще другие игрушки-балансиры : Белочку, балерину и Птичку из картошки.

Другие самодельные игрушки, иллюстрирующие разные физические законы, можно увидеть в рубрике «Научные игрушки«.

Читайте также: