Роботизированные игрушки своими руками

Обновлено: 28.04.2024

Сейчас уже мало кто помнит, к сожалению, что в 2005 году были Chemical Brothers и у них был замечательный клип — Believe, где роботизированная рука гонялась по городу за героем видео.

Тогда у меня появилась мечта. Несбыточная на тот момент, т. к. ни малейшего понятия об электронике у меня не было. Но мне хотелось верить — believe. Прошло 10 лет, и буквально вчера мне удалось впервые собрать своего собственного робота-манипулятора, запустить его в работу, затем сломать, починить, и снова запустить в работу, а попутно найти друзей и обрести уверенность в собственных силах.

Сначала была паранойя

Как истинный параноик, сразу выскажу опасения, которые у меня изначально были относительно конструктора. В моём детстве сперва были добротные советские конструкторы, потом рассыпающиеся в руках китайские игрушки… а потом детство кончилось:(

  • Пластмасса будет ломаться и крошиться в руках?
  • Детали будут неплотно подходить друг к другу?
  • В наборе будут не все детали?
  • Собранная конструкция будет непрочной и недолговечной?
  • Часть деталей придётся допиливать напильником
  • А части деталей просто не будет в наборе
  • И ещё часть будет изначально не работать, её придётся менять

Детали конструктора не только отлично подходят друг к другу, но также продуман тот момент, что детали почти что невозможно перепутать. Правда, с немецкой педантичностью создатели отложили винтиков ровно столько сколько нужно, поэтому терять винтики по полу или путать «какой куда» при сборке робота нежелательно.

Технические характеристики:

Длина: 228 мм
Высота: 380 мм
Ширина: 160 мм
Вес в сборке: 658 гр.

Питание: 4 батарейки типа D
Вес поднимаемых предметов: до 100 гр
Подсветка: 1 светодиод
Тип управления: проводной дистанционный пульт
Примерное время сборки: 6 часов
Движение: 5 коллекторных моторов
Защита конструкции при движении: храповик

Подвижность:
Механизм захвата: 0-1,77''
Движение запястья: в пределах 120 градусов
Движение локтя: в пределах 300 градусов
Движение плеча: в пределах 180 градусов
Вращение на платформе: в пределах 270 градусов

  • удлинённые плоскогубцы (не получится обойтись без них)
  • боковые кусачки (можно заменить на нож для бумаги, ножницы)
  • крестовая отвёртка
  • 4 батарейки типа D

Важно! О мелких деталях

Кстати о «винтиках». Если вы сталкивались с подобной проблемой, и знаете, как сделать сборку ещё удобнее — добро пожаловать в комментарии. Пока что поделюсь своим опытом.

Одинаковые по функции, но разные по длине болты и шурупы достаточно чётко прописаны в инструкции, например, на средней фото внизу мы видим болты P11 и P13. А может P14 — ну, то есть, вот опять, я снова их путаю. =)

Различить их можно: в инструкции прописано, какой из них сколько миллиметров. Но, во-первых, не будешь же сидеть со штангенциркулем (особенно если тебе 8 лет и\или у тебя его попросту нет), а, во-вторых, различить их в итоге можно только, если положить рядом, что может не сразу прийти на ум (мне не пришло, хе-хе).

  • либо заранее присмотритесь к крепёжным элементам;
  • либо купите себе побольше мелких винтов, саморезов и болтов, чтобы не париться.

Также, ни в коем случае не выбрасывайте ничего, пока не закончите сборку. На нижней фотографии в середине, между двумя деталями от корпуса «головы» робота — небольшое кольцо, которое чуть не полетело в мусор вместе с прочими «обрезками». А это, между прочим, держатель для светодиодного фонарика в «голове» механизма захвата.

Процесс сборки

К роботу прилагается инструкция без лишних слов — только изображения и чётко каталогизированные и промаркированные детали.

Детали достаточно удобно откусываются и зачистки не требуют, но мне понравилась идея каждую деталь обработать ножом для картона и ножницами, хотя это и не обязательно.

Сборка начинается с четырёх из пяти входящих в конструкцию моторов, собирать которые настоящее удовольствие: я просто обожаю шестерёночные механизмы.


Моторчики мы обнаружили аккуратно упакованными и «прилипшими» друг к другу — готовьтесь ответить на вопрос ребёнка, почему коллекторные моторчики магнитятся (можно сразу в комментариях! :)

Важно: в 3 из 5 корпусов моторчиков нужно утопить гайки по бокам — на них в дальнейшем мы посадим корпуса при сборке руки. Боковые гайки не нужны только в моторчике, который пойдёт в основу платформы, но чтобы потом не вспоминать, какой корпус куда, лучше утопите гайки в каждом из четырёх жёлтых корпусов сразу. Только для этой операции будут нужны плоскогубцы, в дальнейшем они не понадобятся.


Примерно через 30-40 минут каждый из 4х моторов оказался снабжён своим шестереночным механизмом и корпусом. Собирается всё не сложнее, чем в детстве собирался «Киндер-сюрприз», только гораздо интереснее. Вопрос на внимательность по фото выше: три из четырёх выходных шестерёнок черные, а где белая? Из её корпуса должны выходить синий и чёрный провод. В инструкции это всё есть, но, думаю, обратить на это внимание ещё раз стоит.


После того, как у вас на руках оказались все моторы, кроме «головного», вы приступите к сборке платформы, на которой будет стоять наш робот. Именно на этом этапе ко мне пришло понимание, что с шурупами и винтами надо было поступать более вдумчиво: как видно на фото выше, двух винтов для скрепления моторчиков вместе за счет боковых гаек мне не хватило — они уже были где-то мною же вкручены в глубине уже собранной платформы. Пришлось импровизировать.


Когда платформа и основная часть руки собраны, инструкция предложит вам перейти к сбору механизма захвата, где полно мелких деталей и подвижных частей — самое интересное!


Но, надо сказать, что на этом спойлеры закончатся и начнутся видео, так как мне нужно было ехать на встречу с подругой и робота, которого не удалось успеть закончить, пришлось захватить с собой.

Как стать душой компании при помощи робота

Легко! Когда мы продолжили сборку вместе, стало понятно: собирать робота самостоятельно — очень приятно. Работать над конструкцией вместе — приятно вдвойне. Поэтому смело могу рекомендовать этот набор для тех, кто не хочет сидеть в кафе за скучными разговорами, но хочет повидаться с друзьями и хорошо провести время. Более того, мне кажется, и тимбилдинг с таким набором — например, сборка двумя командами, на скорость — практически беспроигрышный вариант.

Робот ожил в наших руках сразу, как только мы закончили сборку. Передать вам наш восторг, я, к сожалению, не могу словами, но, думаю, многие меня здесь поймут. Когда конструкция, которую ты сам собрал вдруг начинает жить полноценной жизнью — это кайф!

Мы поняли, что жутко проголодались и пошли поесть. Идти было недалеко, поэтому робота мы донесли в руках. И тут нас ждал ещё один приятный сюрприз: робототехника не только увлекательна. Она ещё и сближает. Как только мы сели за столик, нас окружили люди, которые хотели познакомиться с роботом и собрать себе такого же. Больше всего ребятам понравилось здороваться с роботом «за щупальца», потому что ведёт он себя действительно как живой, да и в первую очередь это же рука! Словом, основные принципы аниматроники были освоены пользователями интуитивно. Вот как это выглядело:

Troubleshooting

По возвращении домой меня ждал неприятный сюрприз, и хорошо, что он случился до публикации этого обзора, потому что теперь мы сразу обговорим troubleshooting.

Решив попробовать подвигать рукой по максимальной амплитуде, удалось добиться характерного треска и отказа функциональности механизма мотора в локте. Сначала это меня огорчило: ну вот, новая игрушка, только собрана — и уже больше не работает.

Но потом меня осенило: если ты сам её только что собрал, за чем же дело стало? =) Я же прекрасно знаю набор шестерёнок внутри корпуса, а чтобы понять, сломался ли сам мотор, или просто недостаточно хорошо был закреплён корпус, можно не вынимая моторчика из платы дать ему нагрузку и посмотреть, продолжатся ли щелчки.

Вот тут-то мне и удалось почувствовать себя настоящим робо-мастером!


Аккуратно разобрав «локтевой сустав», удалось определить, что без нагрузки моторчик работает бесперебойно. Разошёлся корпус, внутрь выпал один из шурупов (потому что его примагнитил моторчик), и если бы мы продолжили эксплуатацию, то шестерёнки были бы повреждены — в разобранном виде на них была обнаружена характерная «пудра» из стёршейся пластмассы.

Очень удобно, что робота не пришлось разбирать целиком. И классно на самом деле, что поломка произошла из-за не совсем аккуратной сборки в этом месте, а не из-за каких-то заводских трудностей: их в моём наборе вообще обнаружено не было.

Совет: первое время после сборки держите отвёртку и плоскогубцы под рукой — могут пригодиться.

Что можно воспитать благодаря данному набору?

Уверенность в себе!

Мало того, что у меня нашлись общие темы для общения с совершенно незнакомыми людьми, но мне также удалось самостоятельно не только собрать, но и починить игрушку! А значит, я могу не сомневаться: с моим роботом всегда всё будет ок. И это очень приятное чувство, когда речь идёт о любимых вещах.

Мы живём в мире, где мы страшно зависим от продавцов, поставщиков, сотрудников сервиса и наличия свободного времени и денег. Если ты почти ничего не умеешь делать, тебе за всё придётся платить, и скорее всего — переплачивать. Возможность починить игрушку самому, потому что ты знаешь, как у неё устроен каждый узел — это бесценно. Пусть у ребёнка такая уверенность в себе будет.

Итоги

  • Собранный по инструкции робот не потребовал отладки, запустился сразу
  • Детали почти невозможно перепутать
  • Строгая каталогизация и наличие деталей
  • Инструкция, которую не надо читать (только изображения)
  • Отсутствие значимых люфтов и зазоров в конструкциях
  • Лёгкость сборки
  • Лёгкость профилактики и починки
  • Last but not least: свою игрушку собираешь сам, за тебя не трудятся филиппинские дети
  • Ещё крепёжных элементов, прозапас
  • Детали и запчасти к нему, чтобы можно было заменить при необходимости
  • Ещё роботов, разных и сложных
  • Идеи, что можно улучшить\приделать\убрать — словом, на сборке игра не заканчивается! Очень хочется, чтобы она продолжалась!

Собирать робота из этого конструктора — не сложнее, чем паззл или «Киндер-сюрприз», только результат гораздо масштабнее и вызываЛ бурю эмоций у нас и окружающих. Отличный набор, спасибо, Даджет!

Мальчиков трудно увлечь творчеством. Они ни за что не согласятся вырезать цветочки из бумаги и делать из них аппликации. Но если эта поделка – робот, то тут уж вы сынишку не оттащите от стола, ведь он так увлечется работой, что будет предлагать разные новые варианты.

Робот из картонных коробок

Если не выбрасывать картонные коробки, а собрать их в достаточном количестве, то можно подбросить ребенку идею сделать чудного робота своими руками. Для работы приготовьте такие материалы:

  • три коробки из картона разных размеров;
  • фигурную упаковку от какой-нибудь запчасти;
  • две круглые формы для кексов из фольги;
  • синельную проволоку;
  • два картонных рулона от пищевой фольги;
  • две основы от новогодней хлопушки;
  • две бобины от скотча;
  • два CD-диска.


Приступаем к сборке нового изделия. Прежде всего, коробки следует вывернуть наизнанку, чтобы убрать с глаз долой различные надписи. Можете не выворачивать, но тогда придется обклеить коробки цветной бумагой или фольгой. Самую маленькую коробку – голову – соединяем с самой большой – туловищем при помощи бобины от скотча – шеи. Можно воспользоваться клеем, а можно работать двусторонним скотчем.


Теперь приделываем роботу штанишки – к туловищу приклеиваем коробку средних размеров.

Руки – рулоны от пищевой фольги – и ноги – основы от новогодних хлопушек – привязываем веревками. Посередине на грудь приклеиваем для объемности фигурную упаковку, а штанишки украшаем двумя дисками.


На лицевой стороне головы прорезаем два круга и вставляем в отверстия формы для кексов – это наши глаза. Рот и сигнальные антенны на макушке делаем из закрученной проволоки.


Оставшуюся бобину из-под скотча разрезаем пополам и приклеиваем по бокам головы – это уши нашей игрушки.

Конструкция получится не очень устойчивая, так что можно обуть робота в детские сапожки или ботиночки.


Если малышу захочется, он может украсить своего нового друга аппликацией и даже на следующий день отнести в детский сад, чтобы похвастаться перед одногодками.


Новогодний костюм

Если коробки у вас большие, можно из них сделать маскарадный костюм для ребенка. В этом случае коробку-голову сразу приклеить к коробке-туловищу. На голове вырезать квадратное отверстие, чтобы малыш мог смотреть через него.


Внутри сделать прорезь для головы сынишки. А руки и ножки роботу смастерить из гибких вентиляционных труб, выбрав нужный диаметр.


Робот из пластиковых бутылок

Делать робота можно и из самого простого материала – пластиковых бутылок. Для поделки приготовьте:

  • непрозрачную бутылку из-под колы;
  • игрушечное ведерко из набора детской посуды;
  • две вилки;
  • три крышечки от пластиковых бутылок;
  • два колеса от игрушечного автомобиля, соединенные шасси.


Снизу по бокам бутылки проделываем два отверстия, в которые продеваем шасси и прикручиваем колесики. Сгибаем две вилки – это руки – и крепим к туловищу сзади на болты. На голову надеваем ведерко, к которому прикрепляем две крышечки побольше – это глаза, и одну поменьше посередине – это рот. Украшаем робота, как подскажет фантазия.


Из бутылок и скотча

Если предыдущая конструкция показалась вам слишком сложной в изготовлении, можете обойтись методикой попроще. Три 1,5-литровых пластиковых бутылки стяните скотчем, не снимая пробок – это тело робота. К каждой крайней бутылке пробкой к пробке скотчем присоедините еще по одно такой же бутылке – получились ноги.


Разрежьте следующую бутылку пополам, и ту половинку, которая без пробки, примотайте скотчем в средней бутылке – это голова. Голову украсьте двумя пробками – глазами.


Руки можно сделать из поллитровых бутылок, нарезав их сегментами и соединив между собой.

Еще из двух бутылок вырежьте ладони и присоедините их к рукам. Поделка готова!


Робот из крышечек

Довольно интересным получится робот из пластиковых крышечек. Благодаря резинке, скрепляющей все элементы, у него будут двигаться руки и ноги. Предлагаем подробный мастер-класс изготовления трансформера из 22 крышечек:

  1. Для каждой ноги понадобится по 4 крышечки. В первых двух делаем отверстие горячим шилом посередине, в третьей – в донышке, но ближе к краю, а в четвертой проделываем сразу два отверстия – в центре и сбоку.
  2. В резинку с одной стороны вдеваем иголку, а с другой затягиваем плотный узел.
  3. Продеваем две крышки с центральным отверстием, затем идет крышка со сдвинутым центром и крышка с дырой в боковине. Завязываем резинку на узел.
  4. По этой же схеме собираем вторую ногу.
  5. Для изготовления руки проделываем в трех крышечках отверстия по центру, а в четвертой – сбоку.
  6. Вначале протягиваем иголку с резинкой в крышечку с боковым отверстием, затем поочередно – с центральными. Затягиваем резинку на узелок.
  7. Для головы нам понадобится одна крышечка и один колпачок от тюбика из-под зубной пасты. Для туловища – пять крышечек. В двух из них делаем отверстия по центру, в двух других – по два симметричных отверстия по бокам, а в пятой – сразу три отверстия по центру и по бокам.
  8. Стягиваем резинкой крышечку-голову, колпачок от зубной пасты и крышечку с тремя отверстиями. За ними идет крышечка с двумя отверстиями и крышечка с одни отверстием. Две оставшиеся крышечки – плечи – продеваем резинкой в боковые отверстия на туловище.
  9. В крайних крышечках рук проделываем по одному боковому отверстию. Пропускаем резинку сквозь него, затем через плечо и крышечку с тремя отверстиями. Далее – вторая крышка плеча и крайняя крышка второй руки.
  10. Через боковое отверстие в ноге пропускаем резинку, далее она проходит сквозь боковые отверстия нижней крышечки туловища, сквозь боковое отверстие во второй ноге и стягивается.


В принципе, наш робот-трансформер готов. Осталось только добавить ему глаза. Можно сделать отверстия в крышечке-голове, аппликацию или приделать их из пластилина. Роботу понадобится гранатомет. Для этого прекрасно подойдет колпачок от шариковой ручки. Его можно прикрепить к руке, поместить за спину или поставить на плечо.


Робот из консервных банок

Красивый робот получается из консервных банок. Нужно вставить одну банку в другую. Руки и ноги сделать из металлических крышечек, которыми закрываются стеклянные поллитровые бутылки с напитками. Просверлив в центре каждой крышечки отверстие, их нужно стянуть между собой на проволоку, закрепив концы. Спереди на корпус робота прикрутить болтами две такие же крышечки.


На верхней банке вырезать отверстие – рот, прикрутить два болта – глаза. А уши сделать из кругов из фольги, закрепив их по бокам так, чтобы они торчали в разные стороны.


Не забудьте сделать фото вашей работы поэтапно и выложите на свою страничку в соцсеть. Пусть посетители позавидуют вашим умениям, а, может, даже переймут неординарный опыт.

Сразу оговоримся, что совсем дешево делать не будем, т.к. не хочется убивать нервные клетки, делая доморощенные энкодеры для моторчиков + хочется упростить создание 3D модели, которая нужна для управления через ROS (ссылка на готовую модель – ниже в статье).

На момент написания статьи ориентировочная конечная стоимость изделия составляет ~70 000 руб. Если у вас есть 3D принтер, то можно смело вычесть из нее 20 000 руб. Если принтера нет, то его появление станет приятным бонусом. Все расходы я буду описывать исходя из того, что у нас нет ничего, кроме денег.

Как выглядит результат:


Также нужно отметить, что для программирования руки нам понадобится компьютер с установленными ОС Linux (я использую Ubuntu 18.04) и фреймворком ROS (я использую Melodic).

Может возникнуть вопрос «почему 70К рублей – это дешево?»

Отвечаю. Изначально я не хотел заморачиваться с созданием роборуки и думал просто купить что-нибудь простенькое, но достаточно функциональное в сборе.

Что являлось для меня критериями функциональности и минимальной допустимой простотой (т.е. почему НЕ подойдут манипуляторы с алиэкспресса) – можно обсудить в комментариях, чтобы не грузить тех, кому это очевидно и/или не интересно.

Конкурентные решения на рынке

Опишу, однако, кратко примеры того, что я рассматривал на рынке:

Забегая немного вперед скажу, что делать мы будем копию робо-руки PhantomX Pincher Robot Arm Kit Mark II, которая производится именно компанией TossenRobotics.

Итого, видим, что 70 000 руб – это совсем не так дорого.

Что же нам нужно купить?

Все цены привожу на момент написания статьи (июль 2020 года):

1) 6 моторчиков DYNAMIXEL AX-12A


Я покупал по цене 7200 руб за 1 штуку, но, кажется, можно найти и за 6000 при большом желании. Будем считать, что вам не повезет и вы тоже купите за 7200.
Суммарная стоимость: 43 200 руб

Подойдет любой простенький, можно уложиться в 20 000 руб.

3) Arduino Uno + Power Shield



Стоимость: ~4 000 руб

4) Опционально (но я очень рекомендую): Лабораторный источник питания


Стоимость: ~3 500 руб

Сборка

Отлично! Мы закупили все, что нам нужно (вероятно, дольше всего ждали доставки моторчиков, мне их везли больше месяца).

1) Напечатаем детали для манипулятора на 3D принтере.

Качаем STL файлы отсюда

2) Собираем воедино с моторчиками. Проблем со сборкой быть не должно, но если они вдруг появятся, можно воспользоваться вот этой инструкцией

Делаем 3D модель

Класс! Рука у нас есть, но ведь ей же нужно как-то управлять. Хочется максимально использовать достижения человечества, поэтому установим себе ROS.

Для того, чтобы полноценно работать с манипулятором в ROS – нужно сделать его URDF модель. Она будет нам необходима для того, чтобы управлять робо-рукой с помощью пакета MoveIT!
На момент написания статьи последняя стабильная сборка доступна для Melodic/Ubuntu 18.04, чем и объясняется мой выбор версии системы и фреймворка в начале статьи.

Построение URDF модели – довольно трудоемкая (и, на мой взгляд, самая скучная) часть данного проекта. Нужно немного допилить напильником stl модели компонентов и соединить их воедино в XML-образном файле, вручную подбирая правильные коэффициенты смещения деталей друг относительно друга.

Кто хочет – может проделать работу самостоятельно, всем остальным поберегу нервы и просто дам ссылку на свой готовый файл:

В данной модели пока нет захватывающего устройства, однако, до того момента, чтобы захватывать предметы в реальном мире нам еще далеко. Для остальных задач этой модели более чем достаточно.

Выглядит модель вот так:

Из полученного URDF файла мы сделаем конфиг MoveIT!, который позволит нам моделировать движения манипулятора и отправлять управляющие команды на реальную робо-руку.

Для создания конфига есть отличный туториал (ссылка)

Тут я могу опять сэкономить время и предоставить свой конфиг. Лежит он вот тут:

Можно скачать конфиг с гитхаба и запустить следующей командой:


Примерно так можно будет управлять нашей реальной робо-рукой через rviz, когда мы подключим ее к ROS:

А что с реальной рукой?

Переместимся из мира 3D моделей в суровую реальность. У нас есть собранный ранее манипулятор. Хотелось бы его как-то подвигать. Сделаем это с помощью Arduino UNO и Power Shield.

Подключим первый моторчик манипулятора (который снизу) к Power Shield'у и блоку питания следующим образом:


Да, data pin моторчика мы соединим сразу с 3 и 4 выводом Arduino. Пытливый читатель мануала Dynamixel (вот он) сразу заметит, что связь с внешним миром у моторчика организована по Half Duplex Asynchronous Serial Communication, а это означает, что data pin используется сразу и для получения команд и для ответа.

По умолчанию, на аппаратном уровне Arduino умеет работать только с Full Duplex UART. Эту проблему можно обойти, используя Soft Serial библиотеку, что мы и сделаем. Именно использование Half Duplex режима объясняет подключение data pin мотора к 3 и 4 выводам шилда одновременно.

Помимо полудуплексного обмена работа с Dynamixel через Arduino имеет еще пару занимательных моментов, которые могут быть не совсем очевидны с самого начала. Сведем их все воедино.

Как подвигать наш манипулятор?

1) Сначала скачаем нужную библиотеку. Она называется ardyno и ее можно получить через Arduino Library Manager, либо тут (ссылка)

2) По умолчанию Dynamixel AX-12A хотят работать с baud rate = 1000000. Однако Software Serial Interface не потянет такую скорость, поэтому baud rate стоит снизить до 57600. Таким образом, начало файла с вашей программой будет выглядеть примерно вот так:


3) Все наши моторчики соединены друг с другом последовательно. Значит, чтобы обращаться к каждому из них — нужно знать его ID? Это действительно так, объект DynamixelMotor при инициализации получает два параметра: interface (одинаков для всех, его мы задали в предыдущем пункте) и id (должен быть у всех разный, иначе поведение будет у манипулятора весьма странное)


Id каждому моторчику придется задать вручную. Кажется, что будучи соединенными последовательно, они могли бы и сами рассчитаться по номерам от 1 до 6, но этого не предусмотрено. Поэтому нужно каждый моторчик отдельно подключить к Arduino (отключив от остальных) и выполнить следующую программу:


Изначально все моторчики имеют именно поэтому мы и указываем вверху


NEW_ID для каждого моторчика нужно заменить на число от 1 до 6 (да, ок, первый моторчик можно не трогать). Нумеруем их в порядке от нижнего к верхнему.

Ура! у нас есть полноценный манипулятор, который мы можем двигать, а также имеется 3D модель к нему. Можно брать ROS и программировать любые крутые штуки. Но это уже рассказ для отдельной статьи (и не одной). Данное же повествование подошло к концу, спасибо за внимание!

Роботы заменяют людей на производстве и в быту, трудятся в опасных условиях. Андроиды, напоминающие человека, работают, как правило, в качестве промоутеров, а промышленные машины настроены на точное выполнение функций. Их разработкой занимаются специалисты.

Домашних же мастеров интересует вопрос, как сделать робота из подручных средств. Оригинальные механизмы можно сконструировать самостоятельно и запрограммировать на реализацию несложных задач.

Как сделать робота самостоятельно

Робот, реагирующий на источник света

Для быстрого сбора механизмов используются предметы, которые можно найти дома. Это моторчики и батарейки из детских игрушек, проволока, солнечные аккумуляторы от старых калькуляторов, светодиоды. Дополнительно потребуются фиксаторы (клей, изолента), отвертка и другие инструменты из домашней мастерской.

Перед началом работы следует определить, какие функции возьмет на себя готовый механизм. За 15 минут можно собрать робота, который ищет источник света. При включении лампы он будет двигаться к ней, а при перемещении фонаря — следовать за потоком лучей.

Необходимые инструменты и детали

При сборке конструкции простого робота своими руками потребуются:

  • основа – монтажная плата или плотный материал (картон);
  • движущая сила – миниатюрные моторчики мощностью 3 или 5 В (из старой игрушки);
  • колеса – крышки от пластиковых бутылок;
  • датчики – фототранзисторы на 3 В;
  • источник питания — 3 спаянные батарейки АА (пальчиковые);
  • управляющие элементы – транзисторы 816Г (производство – Россия);
  • монтажные приспособления – провода из витой пары.

Для проделывания отверстий на картоне потребуется шило, а фиксатором элементов послужит термопластичный клей (из термопистолета). Для работы также понадобится паяльник и жесткая проволока, которую заменит разогнутая скрепка.

Робот краб НЕХА

Самостоятельно собранный робот, реагирующий на источник света, может стать прототипом робота-плантатора НЕХА, который будет «гоняться» за солнечным светом, столь необходимым для домашних растений.

Процесс сборки

Готовые детали следует разложить на рабочем столе и включить паяльник. Первоначально собирают плату, для чего подготавливают текстолитовую или картонную основу со сторонами от 4 до 5 см. На ней должна уместиться схема, батарейки, двигатели и крепеж переднего колеса.

Первоначально запаивают датчики с учетом полярности подсоединения фотодиодов и фототранзисторов. Их размещают по углам платы с одного края, располагая так, чтобы они смотрели в разные стороны. Это передняя часть робота, его «глаза».

Поодаль от переднего края фиксируют транзисторы, запаивая их так, чтобы маркировка располагалась на стороне правого колеса.

К 3 соединенным батарейкам подпаивают провода и определяют на плате 2 точки их схождения (плюс и минус). Удобно продеть в края платы витую пару, запаять концы к транзисторам и датчикам, вывести петлю и к ней подпаять батарейки.

Двигатели устанавливают в конце шасси с противоположной стороны платы. Управляющий моторчик крепят напротив управляемой системы. Это необходимо, чтобы робот поворачивался на свет.

Сборку электрики начинают от отрицательного полюса батарейки к положительному контакту по всей схеме. Взяв часть витой пары, припаивают отрицательный контакт датчиков к минусу батарей, и в это же место добавляют коллекторы транзисторов.

Робот, следующий за источником света

Конфигурация «светолюбивого» робота может быть любой и зависеть от наличия необходимых материалов, предпочтений и фантазии создателя.

Второй фотоэлемент припаивают небольшим куском провода к транзисторной базе. Остальные ножки присоединяют к моторчикам. Для проверки правильности сборки используют тестер полярности напряжения.

После сборки проводят тестирование. Для этого включают схему и подносят ее к источнику света, поворачивая сначала одним, затем другим чувствительным элементом.

Когда все сделано правильно, двигатели на плате вращаются, меняя скорость в зависимости от степени освещения.

Если устройство не работает, проверяют правильность подключения контактов. В схеме каждый из датчиков отвечает за работу колес — правый за левое, и наоборот. Если это не так, корректируют полярность включения моторов.

Далее осуществляют сборку устройства. Первым делом изготавливают боковые колеса, склеив крышки между собой полой частью внутрь. Для их фиксации просверливают небольшые отверстия, используя миниатюрную дрель с насадками. В колесо продевают проволоку (бывшую скрепку) и закрепляют ее концы между фотодатчиками на плате.

На последнем этапе проверяют работу механизма, используя источники освещения разной интенсивности. Колеса робота должны ехать вперед. Если система работает, зафиксированные на плате моторчики и батарейки закрепляют термоклеем.

После приступают к изучению возможностей робота и расширению его функционала. Например, ставят задачу, чтобы он ездил по заданной траектории.

Робот, различающий препятствия

Перед сборкой интеллектуального устройства обдумывают его внешний вид и принцип передвижения. Оптимальный вариант – использование гусеничной цепи (как в танке).

Такими роботами легче управлять, и они способны передвигаться по любому типу поверхности. Снять гусеницы, моторчик и редуктор можно с игрушечного танка.

Инструменты и запчасти

Перед созданием робота следует подготовить:

  • микроконтроллер (ATmega 16 в корпусе Dip-40);
  • керамические конденсаторы 0,1 мкФ, 1 мкФ, 22 пФ;
  • резисторы на 25 Вт номиналом 10 кОм (1 единицу) и 220 Ом (4 штуки);
  • диод 1N4004;
  • L7805 в корпусе ТО-220;
  • паяльник;
  • инфракрасные диоды (2 шт.);
  • фототранзисторы, способные реагировать на длину ик-лучей;
  • резонатор кварцевый на 16 МГц;
  • мультиметр;
  • радиодетали;
  • гусеницы и мотор от игрушечного экскаватора, танка.

Работа с платой

Для обеспечения питания микроконтроллера подбирают стабилизатор напряжения. Оптимальный выбор – микросхема L7805, дающая на выходе стабильные 5 В. Дополнением к ней идут конденсаторы для сглаживания напряжения и диоды, защищающие от переполюсовки.

Далее осматривают корпус контроллера MK-Dip и выделяют в нем узлы:

  • вывод Reset, подтянутый резистором к «плюсу» источника питания;
  • электролит на 1000 мкФ для защиты от скачков напряжения;
  • кварцевый резонатор и конденсаторы, которые нужно располагать вблизи от выводов Xtal1 и Xtal2.

Робот, различающий препятствия

Управление двигателями

В приспособлении используется микросхема L293D со встроенными диодами, которые защищают систему от перегрузки. Она имеет 2 канала, что позволяет подключить сразу 2 двигателя. Моторчики на плате запрещено присоединять напрямую к МК. Контакт обеспечивается с помощью ключевых транзисторов.

Во время работы возможен нагрев микроэлектронного устройства. Для отведения тепла предусмотрены ножки GND, которые следует распаивать на контактной площадке.

Установка датчиков препятствий

Ориентирование робота в пространстве обеспечивает простой инфракрасный датчик. Он состоит из диода, способного излучать в инфракрасном диапазоне, и фототранзистора для приема лучей. В отсутствии преграды перед механизмом транзистор закрыт.

При его приближении к мебели, стене, элементы улавливают тепло. Транзистор открывается, что активирует течение тока по цепи и побуждает устройство изменять траекторию движения.

Датчики устанавливают на передней части платы, подключая их с помощью проводов к основной схеме. По бокам от основы располагают гусеничный механизм.

Прошивка робота

Для работы устройства требуется программа, которая позволит снимать показания с датчиков и управлять двигателями. Простым роботам ее пишут с использованием языка программирования Си. Он представляет собой набор функций, вызывающих друг друга для дополнения.

Прописывая команды, следует учесть, что по инструкции у робота 2 датчика. Если на 1 из фототранзисторов поступает свет от инфракрасного диода, механизм начинает движение назад, отъезжая от препятствия. Он разворачивается и снова едет вперед.

Наличие преград следует проверять справа и слева, что прописывается с помощью команд. Алгоритм работы можно усовершенствовать, задав командную строку, что делать при возникновении угрозы прямого столкновения.

Улучшить готовый механизм позволит энкодер, который распознает положение робота в пространстве. Для информативности в дальнейшем устанавливается дисплей, на котором будет отображаться отладочная информация, расстояние до препятствий и другие нужные сведения.

Робот, различающий препятствия

Наилучший вариант знакомства детей с миром робототехники — конструирование и программирование Lego-роботов (EV3 и Boost).

Роботы для детей

Робототехника позволяет школьникам развивать творческие навыки и знакомить с техническими терминами. Освоив принципы конструирования lego-роботов (как правило, в школах робототехники используют для обучения lego-платформы), дети учатся разбираться в новых технологиях и осваивают азы востребованной профессии.

Ребятам будет интересно самостоятельно построить или поучаствовать в сборке:

  • механических насекомых, которые передвигаются, светятся в темноте;
  • квадропода (4-хногого шагохода) по специальным чертежам;
  • умных робоживотных, которые могут передвигаться по заданной траектории;
  • робота-колобка для накопления солнечной энергии;
  • настоящей роботизированной руки для игры на барабане и других манипуляций.

Полезные роботизированные устройства для начинающих

Первые шаги в робототехнике можно начать:

  • со знакомства с наборами для конструирования и программирования Lego BOOST (7-12 лет) и Lego EV3 (с 10 лет);
  • с конструирования вибророботов, предназначенных для детских игр;
  • с занятий с использованием электронных конструкторов «Знаток»;
  • со сборки простых конструкторов для начинающих на основе Arduino;
  • с конструирования моделей, представленных обучающими конструкторами Engino.

Необходимые навыки

Для изготовления роботов новичкам потребуются следующие навыки:

  • умение конструировать, создавать механизмы;
  • знание того, как обеспечивается взаимодействие маленьких помощников с внешней средой;
  • изучение темы, так как сделать шагающего робота своими руками – задача не из легких;
  • начальное представление о программировании – переменных, алгоритмах, современных языках.

Познакомившись с азами программирования, можно переходить к созданию самодельных роботов-пылесосов, мойщиков бассейнов и окон в доме. Применение роботам можно найти и в других сферах жизни.

Оригинальные запчасти для двигателей вейчай в Челябинске на doravtosnab.ru.
Что называется сделай сам поделки своими руками, будь настоящим "Самоделкиным"! Вот посмотрите каких забавных роботов можно сделать из крышек, оставшихся от пластиковых бутылок.

Если понравилась моделька, так не ленитесь - сделайте её своими руками сами!

Фото поделок своими руками

роботы из мусора

Робот из крышек

Делаем из крышек нечто

Поделки - робот

Сделай сам

Робота сделайте!

Поделки из крышек

Поделки из крышек от минералки

Поделки из крышек от минералки

Поделки из крышек от газировки

Поделки из крышек от газировки

Поделки из крышек от бутылок

Поделки из крышек от бутылок

Из крышечек от бутылок

Поделки из крышек

Поделки из крышек

Поделки из крышек

Поделки из крышек от бутылок

Поделки из крышек от минводы

Поделки из крышек

Поделки своими руками

Поделки своими руками

Поделки из крышек

Вторая жизнь крышками от бутылок

Вторая жизнь крышками от бутылок

Поделки из крышек

Поделки из крышек

Поделки из крышек

Поделки из крышечек

крышки во вторсырьё

Поделки своими руками из крышек

Поделки из крышек

Поделки из крышек от газировки

Поделки из крышек

Поделки своими руками из крышек

Поделки своими руками из крышек

Поделки из крышек

Простые поделки из крышек

Простые поделки из крышек

Поделки из крышек

Поделки из крышек от бутылок американского солдата Rupert Valero.
Когда Rupert Valero проходил службу в Афганистане (Кандагар) он собирал крышки и другие бросовые материалы на военной базе. Делал из них подвижные игрушки, которыми одаривал местных ребятишек. Некоторые свои поделки он выставил на продажу на аукционе ебэй по 10 - 20$

Если Вы тоже задёте себе вопрос: как из разных материалов сделать робота в домашних условиях без соответствующего оборудования? То мы Вам отвечаем: подобные вопросы все чаще стали появляться на различных блогах и форумах, посвященных изготовлению всевозможных приборов своими руками и робототехнике. Конечно же, сделать современного, многофункционального робота - практически невыполнимая задача в домашних условиях.

Но есть умельцы у нас в России, да и не только. Вот ещё одна интересная статья на эту тему: Простой робот из подручных средств.

Читайте также: