Датчик расстояния lego mindstorms

Обновлено: 27.04.2024

Звезда активна
Звезда активна
Звезда активна
Звезда активна
Звезда не активна

Если вы ознакомились со статьей "Lego mindstorms EV3, два набора – какой выбрать?", то уже знаете, что компания Lego разработала две версии конструктора Lego mindstorms EV3: домашнюю и образовательную. Одно из существенных различий между домашней и образовательной версией конструктора - различающиеся наборы датчиков. Существуют также две версии среды программирования, соответствующие версиям конструктора. В образовательной версии среды программирования можно использовать все существующие датчики для конструкторов Lego mindstorms, но в домашней версии среды программирования изначально доступны для использования только датчики, входящие в домашнюю версию конструктора Lego mindstorms EV3.

Сравните палитры "Датчики" домашней и образовательной версии программного обеспечения Lego mindstorms EV3:

Желтая палитра. Домашняя версия среды программирования.

Палитра "Датчики". Домашняя версия среды программирования.

Желтая палитра. Образовательная версия среды программирования.

Палитра "Датчики". Образовательная версия среды программирования.

Что же делать, если у вас домашняя версия набора, но вам необходимо запрограммировать робота, использующего датчики, программные блоки для которых отсутствуют в домашней версии среды программирования?

Сейчас вы научитесь добавлять нужные вам программные блоки для датчиков в домашнюю версию программного обеспечения:

  1. В первую очередь необходимо скачать с сайта компании Lego программное обеспечение поддержки требуемого вам датчика. Для этого заходим в раздел "Загрузки" официального сайта, посвященного Lego mindstorms EV3 Home, и листаем страницу вниз до ссылок на датчики.
  2. Выбираем ссылку на необходимый нам датчик и скачиваем программный файл к себе в компьютер. (Для примера мы выбрали Ультразвуковой датчик)
  3. Загружаем среду программирования и создаем новый проект. Затем заходим в главное меню программы, выбрав пункт меню "Инструменты" - "Мастер импорта блоков".
  4. В открывшемся диалоговом окне "Мастер экспорта и импорта блоков" среды программирования нажимаем на кнопку "Просмотреть".
  5. Далее выбираем папку, в которую мы загрузили программное обеспечение необходимого датчика, в папке выбираем загруженный файл и нажимаем кнопку "Открыть".
  6. Осталось только выбрать в диалоговом окне "Мастер экспорта и импорта блоков" необходимый датчик и нажать кнопку "Импорт". Для активации установленного датчика следует перезапустить среду программирования.
  7. После перезагрузки среды программирования создаем новый проект и убеждаемся, что на желтой палитре "Датчики" появился подключенный программный блок необходимого датчика!

Остается повторить эту процедуру для всех необходимых вам датчиков.

Извините, но я к сожалению не могу скачать эти датчики на рабочий стол и в папку на рабочем столе только в текстовые редакторы, а там какая то ошибка и оно не открывается.Помогите пожалуйста, и объясните в чем проблема.

Здравствуйте, Дмитрий!
Какой программой просмотра Интернет вы пользуетесь?
Попробуйте на ссылке нажать правой кнопкой мыши и выбрать сохранить как.
Я сейчас специально проверил - все работает. Давайте дальнейшее обсуждение проблемы перенесем в комментарии к статье про установку датчиков.

Звезда активна
Звезда активна
Звезда активна
Звезда активна
Звезда не активна

Введение:

Текущий урок мы посвятим изучению ультразвукового датчика. Данный датчик присутствует только в образовательной версии набора Lego mindstorms EV3. Тем не менее, пользователям домашней версии конструктора советуем тоже обратить внимание на данный урок. Возможно, что прочитав о назначении и использовании этого датчика, вы пожелаете его приобрести в дополнение к своему набору.

7.1. Изучаем ультразвуковой датчик

Главное назначение ультразвукового датчика, это определение расстояния до предметов, находящихся перед ним. Для этого датчик посылает звуковую волну высокой частоты (ультразвук), ловит обратную волну, отраженную от объекта и, замерив время на возвращение ультразвукового импульса, с высокой точностью рассчитывает расстояние до предмета.

Ультразвуковой датчик

Рис. 1

Ультразвуковой датчик может выдавать измеренное расстояние в сантиметрах или в дюймах. Диапазон измерений датчика в сантиметрах равен от 0 до 255 см, в дюймах - от 0 до 100 дюймов. Датчик не может обнаруживать предметы на расстоянии менее 3 см (1,5 дюймов). Так же он не достаточно устойчиво измеряет расстояние до мягких, тканевых и малообъемных объектов. Кроме режимов измерения расстояния в сантиметрах и дюймах датчик имеет специальный режим "Присутствие/слушать". В этом режиме датчик не излучает ультразвуковые импульсы, но способен обнаруживать импульсы другого ультразвукового датчика.

У нашего робота, собранного по инструкции small-robot-45544, ультразвуковой датчик уже закреплен впереди по ходу движения. Подключим его кабелем к порту "3" модуля EV3 и приступим к разбору практических примеров использования ультразвукового датчика.

Задача №14: написать программу, останавливающую прямолинейно движущегося робота, на расстоянии 15 см до стены или препятствия.

Для решения задачи воспользуемся уже знакомым нам программным блоком "Ожидание" Оранжевой палитры, переключив его в Режим: "Ультразвуковой датчик" - "Сравнение" - "Расстояние в сантиметрах" (Рис. 2). Само решение будет похоже на решение Задачи №7.

Блок Ожидание. Ультразвуковой датчик.

Рис. 2

Решение:

  1. Начать прямолинейное движение вперед (Рис. 3 поз. 1)
  2. Ждать, пока значение ультразвукового датчика не станет меньше 15 см. (Рис. 3 поз. 2)
  3. Прекратить движение вперед (Рис. 3 поз. 3)

Решение Задачи №14

Рис. 3

Задача №15: написать программу для робота, держащего дистанцию в 15 см от препятствия.

Решение:

Поведение робота будет следующим:

  • при значении показания ультразвукового датчика больше 15 см робот будет двигаться вперед, стараясь приблизиться к препятствию;
  • при значении показания ультразвукового датчика меньше 15 см робот будет двигаться назад, стараясь удалиться от препятствия.

Мы уже знаем, что за организацию выбора выполняемых блоков в зависимости от условия отвечает программный блок "Переключатель" Оранжевой палитры. Установим для блока "Переключатель" режим "Ультразвуковой датчик" - "Сравнение" - "Расстояние в сантиметрах" (Рис. 4 поз.1). Параметр "Тип сравнения" блока "Переключатель" установим в значение "Больше"=2, а "Пороговое значение" определим равным 15 (Рис. 4 поз. 2). Такие настройки программного блока "Переключатель" приведут к следующему поведению программы: При показаниях ультразвукового датчика больше 15 см будут выполняться программные блоки, помещенные в верхний контейнер (Рис. 4 поз. 3), в противном случае будут выполняться программные блоки, помещенные в нижний контейнер (Рис. 4 поз. 4).

Блок Переключатель. Ультразвуковой датчик.

Рис. 4

Поместим в эти контейнеры программные блоки, включающие движение вперед и назад. Для того чтобы программный блок "Переключатель" выполнялся многократно, поместим его внутрь программного блока "Цикл" Оранжевой палитры (Рис. 5).

Решение Задачи №14

Рис. 5

Загрузите получившуюся программу в робота и запустите ее на выполнение. Если перед роботом отсутствует препятствие, то он поедет вперед. Поднесите руку близко к ультразвуковому датчику, попробуйте отводить - приближать руку. Как ведет себя робот? Ждем ваши комментарии к этому уроку.

7.2. Робот-полицейский

Принцип работы ультразвукового датчика очень похож на радар, который применяется для измерения скорости движущихся автомобилей. Как радар узнаёт скорость автомобиля? Он измеряет расстояние до движущегося объекта, ждёт заданное небольшое время и повторяет измерение. Разность расстояний - это пройденный путь автомобиля. Разделив пройденный путь на время между двумя измерениями, можно найти скорость, с которой двигался объект измерения.

Давайте же научим и нашего робота работе радара!

Робот-полицейский

Рис. 6

Последовательность действий, выполняемых роботом, будет следующей:

  • Робот ждёт появления в зоне контроля движущегося объекта;
  • измеряет расстояние до объекта;
  • ждёт 1 секунду;
  • повторно измеряет расстояние до объекта;
  • находит пройденное расстояние и сравнивает его с пороговым значением;
  • выводит на экран результат и подает тревогу в случае превышения скорости.

Начнём создавать программу для нашего робота-полицейского.

  1. С помощью программного блока "Ожидание" ждём появления объекта в зоне контроля робота (Рис. 7 поз. 1). Расстояние до объекта передаем в программный блок "Математика" (Рис. 7 поз. 4).
  2. С помощью программного блока "Ожидание" ждем 1 секунду.
  3. Второй раз снимаем показание ультразвукового датчика (Рис. 7 поз. 3) и передаем полученное значение в программный блок "Математика" (Рис. 7 поз. 4).
  4. В программном блоке "Математика" находим расстояние, пройденное объектом измерения за 1 секунду. Полученное значение передаем в программный блок "Сравнение" (Рис. 7 поз. 5) и выводим на экран (Рис. 7 поз. 6).
  5. С помощью программного блока "Сравнение" (Рис. 7 поз. 5) сравниваем пройденное расстояние с пороговым значением, равным 10. Результат сравнения двух чисел представляет собой логический вывод. Логический вывод может принимать одно из двух значений: "Да" или "Нет". Этот вывод мы передаем в прогаммный блок "Переключатель" (Рис. 7 поз. 7), настроив его на прием логических значений. Обратите внимание: шины данных, передающие логические значения, окрашены в зеленый цвет, в отличие от желтых шин данных, передающих числовые значения. (В дальнейшем мы подробнее ознакомимся с принципами обработки логических значений).
  6. С помощью программного блока "Переключатель" мы организуем две ветки поведения программы в зависимости от скорости объекта. Если объект за 1 секунду приблизился к роботу, больше чем на 10 см, значит, будем считать его приближение критическим и подадим сигналы тревоги (Рис. 7 поз. 8). В противном случае будем считать, что объект движется медленно, в этом случае робот включит зеленую подсветку клавиш модуля EV3 и произнесёт "Okay".
  7. В конце программы еще раз воспользуемся программным блоком "Ожидание" (Рис. 7 поз. 10) и "придержим" завершение программы на 5 секунд, чтобы успеть прочитать информацию на экране модуля EV3.

Программа для робота-полицейского

Рис. 7

Загрузите программу в робота, расположите робота так, чтобы перед ним на расстоянии 60 сантиметров отсутствовали другие предметы, запустите программу на выполнение. Перемещайте в направлении к роботу игрушечный автомобиль или объемный предмет, наблюдайте за реакцией робота. Попробуйте изменять пороговые значения в программе. Как изменяется поведение робота? Опишите свои наблюдения в комментарии к этому уроку.

7.3. Ультразвуковой датчик - режим "Присутствие/слушать"

Как уже отмечалось выше, в этом режиме ультразвуковой датчик способен обнаруживать излучение другого ультразвукового датчика. Результатом обнаружения является логическое значение: "Да", если найдено ультразвуковое излучение, или "Нет", если ничего не найдено. Данный режим можно использовать, например, в состязаниях роботов-шпионов (описание режима уже говорит о том, что для его использования необходимо минимум два робота).

Задача № 16: необходимо написать программу, обнаруживающую другого робота, с работающим ультразвуковым датчиком.

Попробуйте написать программу самостоятельно, не подглядывая в решение!

Используя знания, полученные ранее, попробуйте самостоятельно разобрать вариант решения Задачи №16. Предложите свой вариант решения.

Решение Задачи №16

I'm extremely impressed with your writing skills and also with the layout on your weblog.
Is this a paid theme or did you customize it yourself? Anyway keep up the
excellent quality writing, it is rare to see a nice
blog like this one nowadays.

Your means of explaining all in this post is truly fastidious,
every one be capable of effortlessly know it,
Thanks a lot.

If you are going for most excellent contents like me, simply pay a quick
visit this website every day since it gives quality contents, thanks

Heya i'm for the first time here. I found this board and I find It really useful & it helped me out a lot.
I hope to give something back and aid others like you aided me.

Внимание!
Возрастная категория посетителей сайта - (10+).
Все комментарии перед публикацией проходят модерацию.

Звезда активна
Звезда активна
Звезда активна
Звезда активна
Звезда активна

Введение:

Инфракрасный датчик входит домашнюю версию набора Lego mindstorms EV3. Это единственный датчик, который может применяться как самостоятельно, так и в паре с инфракрасным маяком, тоже являющимся частью домашнего набора. Следующие два урока мы посвятим изучению этих двух устройств, а также их взаимодействию между собой.

8.1. Изучаем инфракрасный датчик и инфракрасный маяк

Инфракрасный датчик (Рис. 1) в своей работе использует световые волны, невидимые человеку - инфракрасные волны*. Такие же волны используют, например, дистанционные пульты управления различной современной бытовой техникой (телевизорами, видео и музыкальными устройствами). Инфракрасный датчик в режиме "Приближение" самостоятельно посылает инфракрасные волны и, поймав отраженный сигнал, определяет наличие препятствия перед собой. Еще два режима работы инфракрасный датчик реализует в паре с инфракрасным маяком (Рис. 2). В режиме "Удаленный" инфракрасный датчик умеет определять нажатия кнопок инфракрасного маяка, что позволяет организовать дистанционное управление роботом. В режиме "Маяк" инфракрасный маяк посылает постоянные сигналы, по которым инфракрасный датчик может определять примерное направление и удаленность маяка, что позволяет запрограммировать робота таким образом, чтобы он всегда следовал в сторону инфракрасного маяка. Перед использованием инфракрасного маяка в него необходимо установить две батарейки AAA.

Инфракрасный датчик

Рис. 1

Инфракрасный маяк

Рис. 2

8.2. Инфракрасный датчик. Режим "Приближение"

Этот режим работы инфракрасного датчика похож на режим определения расстояния ультразвуковым датчиком. Разница кроется в природе световых волн: если звуковые волны отражаются от большинства материалов практически без затухания, то на отражение световых волн влияют не только материалы, но и цвет поверхности. Темные цвета в отличие от светлых сильнее поглощают световой поток, что влияет на работу инфракрасного датчика. Диапазон работы инфракрасного датчика также отличается от ультразвукового - датчик показывает значения в пределах от 0 (предмет находится очень близко) до 100 (предмет находится далеко или не обнаружен). Еще раз подчеркнем: инфракрасный датчик нельзя использовать для определения точного расстояния до объекта, так как на его показания в режиме "Приближение" оказывает влияние цвет поверхности исследуемого предмета. В свою очередь это свойство можно использовать для различия светлых и темных объектов, находящихся на равном расстоянии до робота. С задачей же определения препятствия перед собой инфракрасный датчик справляется вполне успешно.

Решим практическую задачу, похожую на Задачу №14 Урока №7, но, чтобы не повторяться, усложним условие дополнительными требованиями.

Задача №17: написать программу прямолинейно движущегося робота, останавливающегося перед стеной или препятствием, отъезжающего немного назад, поворачивающего на 90 градусов и продолжающего движение до следующего препятствия.

У робота, собранного по инструкции small-robot-31313, впереди по ходу движения установлен инфракрасный датчик. Соединим его кабелем с портом "3" модуля EV3 и приступим к созданию программы.

Рассмотрим программный блок "Ожидание" Оранжевой палитры, переключив его в Режим: "Инфракрасный датчик" - "Сравнение" - "Приближение" (Рис. 3). В этом режиме программный блок "Ожидание" имеет два входных параметра: "Тип сравнения" и "Пороговое значение". Настраивать эти параметры мы уже умеем.

Блок

Рис. 3

Решение:

  1. Начать прямолинейное движение вперед
  2. Ждать, пока пороговое значение инфракрасного датчика станет меньше 20
  3. Прекратить движение вперед
  4. Отъехать назад на 1 оборот двигателей
  5. Повернуть вправо на 90 градусов (воспользовавшись знаниями Урока №3, рассчитайте необходимый угол поворота моторов)
  6. Продолжить выполнение пунктов 1 - 5 в бесконечном цикле.

Попробуйте решить Задачу № 17 самостоятельно, не подглядывая в решение.

Решение Задачи №17

Рис. 4

А теперь для закрепления материала попробуйте адаптировать решение Задачи №15 Урока №7 к использованию инфракрасного датчика! Получилось? Поделитесь впечатлениями в комментарии к уроку.

8.3. Дистанционное управление роботом с помощью инфракрасного маяка

Инфракрасный маяк, входящий в домашнюю версию конструктора Lego mindstorms EV3, в паре с инфракрасным датчиком позволяет реализовать дистанционное управление роботом. Познакомимся с маяком поближе:

  1. Пользуясь инфракрасным маяком, направляйте передатчик сигнала (Рис. 5 поз. 1) в сторону робота. Между маяком и роботом должны отсутствовать любые препятствия! Благодаря широкому углу обзора инфракрасный датчик уверено принимает сигналы, даже если маяк располагается позади робота!
  2. На корпусе маяка расположены 5 серых кнопок (Рис. 5 поз. 2), нажатия которых распознает инфракрасный датчик, и передает коды нажатий в программу, управляющую роботом.
  3. С помощью специального красного переключателя (Рис. 5 поз. 3) можно выбрать один из четырех каналов для связи маяка и датчика. Сделано это для того, чтобы в непосредственной близости можно было управлять несколькими роботами.

Инфракрасный маяк

Рис. 5

Задача №18: написать программу дистанционного управления роботом с помощью инфракрасного маяка.

Мы уже знаем, что для реализации возможности выбора выполняющихся блоков необходимо воспользоваться программным блоком "Переключатель" Оранжевой палитры. Установим режим работы блока "Переключатель" в "Инфракрасный датчик" - "Измерение" - "Удалённый" (Рис. 6).

Блок

Рис. 6

Для активации связи между инфракрасным датчиком и маяком необходимо установить правильное значение параметра "Канал" (Рис. 7 поз. 1) в соответствии с выбранным каналом на маяке! Каждому программному контейнеру блока "Переключатель" необходимо сопоставить один из возможных вариантов нажатия серых клавиш (Рис. 7 поз. 2). Заметьте: некоторые варианты включают одновременное нажатие двух клавиш (нажатые клавиши помечены красным цветом). Всего в программном блоке "Переключатель" в этом режиме можно обрабатывать до 12 различающихся условий (одно из условий должно быть выбрано условием по умолчанию). Добавляются программные контейнеры в блок "Переключатель" нажатием на "+" (Рис. 7 поз.3).

Настройки блока

Рис. 7

Предлагаем реализовать следующий алгоритм управления роботом:

  • Нажатие верхней левой кнопки включает вращение левого мотора, робот поворачивает вправо (Рис. 7 поз. 2 значение: 1)
  • Нажатие верхней правой кнопки включает вращение правого мотора, робот поворачивает влево (Рис. 7 поз. 2 значение: 3)
  • Одновременное нажатие верхних левой и правой кнопок включает одновременное вращение вперед левого и правого мотора, робот двигается вперед прямолинейно (Рис. 7 поз. 2 значение: 5)
  • Одновременное нажатие нижних левой и правой кнопок включает одновременное вращение назад левого и правого мотора, робот двигается назад прямолинейно (Рис. 7 поз. 2 значение: 8)
  • Если не нажата ни одна кнопка маяка - робот останавливается (Рис. 7 поз. 2 значение: 0).

При разработке алгоритма дистанционного управления вы должны знать следующее: когда нажата одна из комбинаций серых кнопок - инфракрасный маяк непрерывно посылает соответствующий сигнал, если кнопки отпущены, то отправка сигнала прекращается. Исключение составляет отдельная горизонтальная серая кнопка (Рис. 7 поз 2 значение: 9). Эта кнопка имеет два состояния: "ВКЛ" - "ВЫКЛ". Во включенном состоянии маяк продолжает посылать сигнал, даже если вы отпустите кнопку (о чём сигнализирует загорающийся зеленый светодиод), чтобы выключить отправку сигнала в этом режиме - нажмите горизонтальную серую кнопку еще раз.

Приступим к реализации программы:

Наш алгоритм дистанционного управления предусматривает 5 вариантов поведения, соответственно наш программный блок "Переключатель" будет состоять из пяти программных контейнеров. Займемся их настройкой.

  1. Вариантом по умолчанию назначим вариант, когда не нажата ни одна кнопка (Рис. 7 поз. 2 значение: 0). Установим в контейнер программный блок "Независимое управление моторами", выключающий моторы "B" и "C".
  2. В контейнер варианта нажатия верхней левой кнопки (Рис. 7 поз. 2 значение: 1) установим программный блок "Большой мотор", включающий мотор "B".
  3. В контейнер варианта нажатия верхней правой кнопки (Рис. 7 поз. 2 значение: 3) установим программный блок "Большой мотор", включающий мотор "C".
  4. В контейнер варианта одновременного нажатия верхних левой и правой кнопок (Рис. 7 поз. 2 значение: 5) установим программный блок "Независимое управление моторами", включающий вращение моторов "B" и "C" вперед.
  5. В контейнер варианта одновременного нажатия нижних левой и правой кнопок (Рис. 7 поз. 2 значение: 8) установим программный блок "Независимое управление моторами", включающий вращение моторов "B" и "C" назад.
  6. Поместим наш настроенный программный блок "Переключатель" внутрь программного блока "Цикл".

По предложенной схеме попробуйте создать программу самостоятельно, не подглядывая в решение!

Решение Задачи №18

Рис. 8

Загрузите получившуюся программу в робота и запустите её на выполнение. Попробуйте управлять роботом с помощью инфракрасного маяка. Всё ли у вас получилось? Понятен ли вам принцип реализации дистанционного управления? Попробуйте реализовать дополнительные варианты управления. Напишите свои впечатления в комментарии к этому уроку.

* Хотите увидеть невидимые волны? Включите режим фотосъемки в мобильном телефоне и поднесите излучающий элемент дистанционного пульта от телевизора к объективу мобильного телефона. Нажимайте кнопки пульта дистанционного управления и на экране телефона наблюдайте свечение инфракрасных волн.

. Никак не могу сообразить - как сделать программу чтобы совместить в ней и работу кнопки и датчика? Помогите пожалуйста. Полагаю, нужно использовать блок "переключатель"


Здравствуйте, Антон!
Попробуйте в бесконечном цикле опрашивать поочерёдно нужные вам датчики с помощью жёлтой палитры команд. При появлении нужного значения на датчике - вызывайте нужную подпрограмму действия!

Внимание!
Возрастная категория посетителей сайта - (10+).
Все комментарии перед публикацией проходят модерацию.

Ультразвуковой датчик Lego EV3 часто применяется в различных соревнованиях и конкурсах.

Ультразвуковой датчик Lego EV3

ультразвуковой датчик Lego EV3

Но в самом начале нужно разобраться в том, что такое ультразвуковые колебания или ультразвук.

Ультразвук

что такое ультразвук

Ультразвуком называются звуковые колебания, не воспринимаемые человеческим слухом. Частота колебаний ультразвука свыше 20 кГц.

При помощи ультразвуковых колебаний животные могут ориентироваться в пространстве, охотиться, обмениваться информацией. Примером таких животных могут служить дельфины, летучие мыши и другие животные.

Дельфин

дельфин

Дельфины испускают ультразвуковые колебания и находят стаи рыб под водой. Также при помощи ультразвука дельфины умеют передавать информацию друг другу. Ультразвук позволяет летучим мышам ориентироваться в темное время суток и охотиться на насекомых.

Ультразвуковой датчик

Ультразвуковой датчик Lego EV3 является цифровым бесконтактным датчиком. Он входит в состав образовательного набора Lego EV3. В домашней версии набора его нет. Основной функцией датчика ультразвука является измерение расстояния до объектов, которые находятся перед ним в зоне его действия.

45544 Lego EV3

45544 Lego EV3

Принцип действия датчика заключается в том, что он посылает высокочастотную звуковую волну и принимает обратную волну, которая отражается от предмета. При этом измеряется время, затраченное на возврат ультразвукового импульса.

После чего с достаточно высокой точностью может быть рассчитано расстояние до предмета. Звук имеет очень высокую частоту. Поэтому человеческое ухо не может услышать этот звук.

Ультразвуковой датчик Lego EV3 выдает измеренное расстояние в сантиметрах или в дюймах. Основные характеристики датчика:

  1. Сенсор имеет диапазон измерений от 0 до 255 см
  2. Если расстояние до предмета менее 3 сантиметров датчик или не обнаруживает предмет, или может давать недостоверные данные
  3. Погрешность датчика составляет около 20 процентов. Наиболее хорошо и достоверно ультразвуковой датчик EV3 работает на расстоянии от 10 до150 см

Если объект имеет небольшой объем или сделан из ткани или какого-нибудь мягкого материала, то датчик также недостаточно устойчиво измеряет расстояние до объекта.

Режимы и подключение ультразвукового датчика

Датчик ультразвука EV3 может не только измерять расстояние, но и способен фиксировать импульсы другого датчика ультразвука. Для этого существует режим «Присутствие/слушать». При включении этого режима датчик не излучает сигналы, но обнаруживает сигналы другого датчика ультразвука.

Ультразвуковой датчик

характеристики ультразвукового датчика

В каком из режимов работы находится датчик, можно определить визуально. Вокруг «глаз» датчика находится световой индикатор. Когда индикатор светится и не мигает, то у датчика режим «Измерение». Мигание индикатора показывает, что датчик находится в режиме «Присутствие/слушать».

К контроллеру Lego EV3 датчик может быть подключен плоским черным соединительным кабелем, входящим в состав конструктора. Ультразвуковой датчик по умолчанию включается в порт под номером четыре.

Блок Lego EV3

модуль Lego EV3

Но включать можно в любой входной порт. Контроллер автоматически определит порт подключения.

Области применения ультразвуковых датчиков

Датчики ультразвука нашли свое применение в автомобилестроении, медицине, гидролокации, военной области.

Инфракрасный датчик Lego EV3 является цифровым дистанционным датчиком. Датчик предназначен для обнаружения инфракрасного света, который отражается от сплошных предметов (объектов).

Инфракрасный датчик Lego EV3

инфракрасный датчик

Инфракрасное излучение также называют тепловое излучение. Спектральная область инфракрасного излучения располагается между красным концом видимого света, которое имеет длину волны λ = 0,74 мкм с частотой 430 ТГц и микроволновым радиоизлучением λ ~ 1—2 мм с частотой 300 ГГц.

Инфракрасное излучение

что такое инфракрасное излучение

Принцип работы датчика взят из живой природы. Для ориентации в пространстве и охоты некоторые виды животных используют тепловое излучение. К таким живым организмам относятся кальмары, летучие мыши-вампиры, некоторые виды змей и другие животные.

Режимы работы инфракрасного датчика

Инфракрасный датчик находится в составе домашней версии робототехнического конструктора Lego Mindstorms EV3 с артикулом 31313. В состав образовательной версии Lego EV3 датчик не входит. При необходимости инфракрасный датчик приобретается отдельно. Инфракрасный сенсор является бесконтактным датчиком.

В комплекте домашней версии присутствует инфракрасный маяк, который предназначен для подачи инфракрасных световых сигналов. Инфракрасный датчик в состоянии обнаруживать эти сигналы. Также при помощи связки инфракрасный датчик плюс инфракрасный маяк можно организовать удаленное управление роботом,

инфракрасный датчик с проводом

инфракрасный датчик с проводом

У инфракрасного датчика есть три режима, в которых он может работать:

  1. В режиме приближения
  2. В режиме маяка
  3. В дистанционном режиме

Основные характеристики инфракрасного датчика

  • В режиме «Приближение» инфракрасный датчик определяет расстояние между сенсором и предметом. Для этого используются отраженные от объекта световые волны. В этом режиме не используется измерение в сантиметрах или дюймах. Используются условные единицы от 0 что значит очень близко до100 очень далеко. Приблизительное расстояние, на котором можно использовать датчик около 70 сантиметром. На точность измерения влияет размер и форма предмета.
  • Режим «Маяк» использует совместно инфракрасный датчик с инфракрасным маяком. Этот режим позволяет приблизительно определить, где расположен инфракрасный маяк перед инфракрасным датчиком. Датчик может выдавать логическое значение истина или ложь при обнаружении маяка. В условных единицах от 0 до 100 показывает относительное расстояние до маяка. В этом режиме максимальное расстояние обнаружения маяка около двух метров. Также в условных единицах от -25 до 25 показывает направление маяка. При этом 0 означает, что маяк находится перед датчиком.
  • В режиме «Дистанционное управление» можно управлять роботом на расстоянии. В этом режиме датчик может распознавать, какие кнопки нажаты на маяке.

Инфракрасный датчик не является очень точным, и погрешность измерения может достигать 20 процентов. Подключение к контроллеру EV3 стандартным плоским кабелем. Можно подключать датчик к любому порту входа, но по умолчанию подключение происходит к 4 порту. При подключении к любому порту модуль EV3 определит датчик автоматически.

Читайте также: