Конструирование роботов в lego digital designer

Обновлено: 16.05.2024

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Обращаем Ваше внимание, что c 1 сентября 2022 года вступают в силу новые федеральные государственные стандарты (ФГОС) начального общего образования (НОО) №286 и основного общего образования (ООО) №287. Теперь требования к преподаванию каждого предмета сформулированы предельно четко: прописано, каких конкретных результатов должны достичь ученики. Упор делается на практические навыки и их применение в жизни.

Мы подготовили 2 курса по обновлённым ФГОС, которые помогут Вам разобраться во всех тонкостях и успешно применять их в работе. Только до 30 июня Вы можете пройти дистанционное обучение со скидкой 40% и получить удостоверение.

Столичный центр образовательных технологий г. Москва

Получите квалификацию учитель математики за 2 месяца

от 3 170 руб. 1900 руб.

Количество часов 300 ч. / 600 ч.

Успеть записаться со скидкой

Форма обучения дистанционная

Подготовил : Педагог дополнительного образования МБОУ ДО ЦДТТ «Юный техник» г. Краснодар – Колесник Андрей Сергеевич

Значимость: мастер-класса обусловлена тем, что одной из разновидностей конструкторской деятельности для обучающихся является создание 3D-моделей из LEGO-конструкторов, которые обеспечивают сложность и многогранность воплощаемой идеи. Опыт, получаемый ребенком в ходе конструирования, незаменим в плане формирования умения и навыков исследовательского поведения. LEGO–конструирование способствует формированию умению учиться, добиваться результата, получать новые знания об окружающем мире, закладывает первые предпосылки учебной деятельности. Современные дети легко осваивают компьютерные программы, связанные с любыми современными конструкторами, которыми они пользуются дома. Познакомить детей с программами, позволяющими создавать конструкции и модели в программе LEGO Digital Designer, ориентированы на изучение основных физических принципов и базовых технических решений, лежащих в основе всех современных конструкций и устройств. Умение работать с такими программами поможет современным детям легче адаптироваться в выборе будущей профессии.

Формы обучения: очная, дистанционная.

Уровень освоения: базовый, стартовый.

Цель : развитие первоначальных конструкторских способностей, формирование интереса, устойчивой мотивации к конструированию в программе LEGO Digital Designer.

Задачи:
- формировать интерес к занятиям с использованием и изучением компьютерных программ;
- формировать практические умения и навыки в освоении программы LEGO Digital Designer для моделирования моделей;
- формировать у учащихся навыки безопасной работы за компьютером;
- развивать у учащихся интерес к моделированию и конструированию, стимулировать детское техническое творчество;


В статье рассматривается возможность автоматизированного проектирования Lego-роботов в Lego Digital Designer для использования в образовательной робототехнике.

Робототехника в образовании на сегодняшний день это инструмент инженерного образования школьников. Робототехника — это технология интеграции механики, электроники и программирования, позволяющая выявлять и проводить начальное воспитание инженерных талантов, в котором заинтересовано государство в рамках обеспечения новых инженерно-технических кадров [1] и глобального технического превосходства лидерства России к 2035 году [2]. Благодаря появлению массовых конструкторов с их модульными компонентами и простоте программирования стала широкодоступной возможность создания несложных учебных роботов. В настоящее время появилось множество робототехнических конструкторов от различных фирм [3], в том числе и от российских, ориентированных на определённый возраст детей, имеющих определённые плюсы и минусы. В жизни и образовании наиболее популярными наборами конструирования механизмов и роботов на данный момент являются продукты компании Lego, т. к. они охватывает весь контингент детей. Это очень качественный продукт, с которым дети играют с пользой для развития пространственного воображения и моторики пальцев.

У педагогов и тренеров по робототехнике, да и самих обучающихся есть необходимость в моделировании роботов серии Lego, в последующем сохранении в виде трёхмерной модели, создании инструкции по сборке. Необходимость в моделировании также может быть обусловлена по причине нехватки технического оборудования из-за высокой стоимости наборов или отдельных компонентов и может стать существенной проблемой применения робототехнических наборов в учебном процессе, заключающейся в недостаточном количестве комплектов конструкторов. Один Lego-набор серии Mindstorms рассчитан на 2-х человек. Возникает проблема, когда каждая группа может собирать робота не одно занятие, а это значит, что модель приходится разобрать, чтобы последующая группа могла собирать собственную модель. Решением этой проблемы является изначальное трёхмерной моделирование конструкции робота, по которой ученики могут быстро строить робота и заниматься его программированием [6]. Кроме того, когда необходима демонстрация некоторых частей, конструкций робота, а детали Lego достаточно малы и это может затруднить наблюдение и понимание работы конструкции учениками. Снова для решения данной проблемы можно использовать заранее подготовленную конструкцию, которую можно продемонстрировать на большом экране проектора. И наконец, не стоит забывать, что подобные инструменты позволяют работать удалённо. Таким образом, актуальность статьи определена необходимостью в моделировании робототехнических систем продуктов Lego.

Screenshot_1

Рис. 1. Окно программы Lego Digital Designer

Наиболее подходящим софтом для автоматизированного проектирования роботов Lego является CAD всё той же компании Lego — Lego Digital Designer (LDD), распространяющейся бесплатно. LDD — это огромный «сундук» с сотнями деталей Lego в одном месте, возможность собирать модели из тех деталей, которых просто не хватает или так и не получилось приобрести. Отличает LDD от аналогов (например, LeoCad, SR 3D Builder, Konstruktor и LDraw) в том, что данный инструмент является наиболее простым для освоения. В LDD наиболее простой интерфейс, с которым справится любой пользователь, будь то ребёнок или взрослый человек. Для юных робототехников LDD это лучший способ познакомить с трёхмерным моделированием, чтобы в последствии познакомиться с более серьёзными средами [5]. Стоит отметить момент, который может доставить неудобство русскоязычному пользователю: интерфейс не переведён на русский язык. Окно программы можно условно поделить на три пространства: левая панель, верхняя панель и рабочее пространство. В левой панели расположены три вкладки, в которых спрятаны строительные элементы (bricks) сгруппированных по тематике, возможность работать с заготовками (templates) и группами (groups). В верхней панели находится меню и панель инструментов. На рабочем пространстве пользователь собирает модели по кирпичикам или разбирает уже готовые, чтобы увидеть структуру модели. Для комфортной работы есть практически все инструменты. Единственное что не хватает, это возможность зеркально клонировать элементы. В отличие от аналогичных программ, детали тут присоединяются друг к другу автоматически. Трехмерные модели сохраняются во внутреннем формате LXF, но возможность экспорта модели в другие форматы, дружественные для программ-аналогов всё же имеется.

LDD умеет создавать инструкции в нескольких вариантах. Первый вариант инструкции генерируется в самой программе (Building guide mode). В этом режиме шаг за шагом детали с анимацией соединяются вместе и можно интерактивно вращать, разглядывать со всех сторон для полного понимания сборки. Единственное, что не редки моменты, когда инструкция сгенерировалась с некими ошибками, связанными с последовательностью сборки, но возможности самому пользователю как-то перестроить, объединить шаги или выбрать иную вариацию сборки некоторых шагов просто нет. Второй вариант (HTML building guide) инструкции генерируется в виде HTML-странички с ресурсными файлами и получается менее удобным, где на странице по нажатию на кнопки управления просто меняются картинки. Более того встречаются все те же самые «болячки», что и в режиме «Building guide mode», которые не лечатся, а инструкция получается менее интерактивной. Нахожу, что интерактивные инструкции, когда можно что-то вращать и рассматривать, являются наиболее удобными для юных робототехников, нежели это были бы просто картинки, например, в виде пошаговых pdf инструкций. Убеждён, что дети с развитым конструкторским навыком, пространственным мышлением могут повторить сборку робота просто смотря на него с разных сторон. Никак не учитывается физика и полностью отсутствует возможность симуляция работы механизмов, которая, например, есть в SR 3D Builder.

Screenshot_2
Screenshot_3

Рис. 2. Варианты инструкций модели (слева — «Building guide mode», справа — HTML building guide)

В итоге получаем инструментарий, который без труда позволяет создавать трёхмерные модели роботов, хранить в интерактивном формате и обмениваться моделью с единомышленниками.

Рис. 3. Модель робота (Riley Rover BI), использованная в эксперименте

При работе с трёхмерным редактором возникла следующая гипотеза: не тратится ли больше времени на сборку трёхмерной модели робота в LDD, чем для реальной модели? Для этого был проведён следующий эксперимент. По регламенту эксперимента необходимо было каждому учащемуся не спеша собрать одну и ту же модель робота (представленной в pdf инструкции на компьютере — рис. 3) в виде реальной модели и трёхмерной в LDD. В эксперименте участвовало 10 обучающихся объединения «Робоквантум» детского технопарка «Кванториум» города Чебоксары уже владеющих навыками сборки и моделирования роботов в LDD Lego-роботов. При сборке реальной (материальной) модели робота все детали, которые необходимо было использовать при сборке были разложены в наборе конструктора подобающим образом (т. е. исходя из брошюры правил размещения деталей). Для обработки эксперимента был выбран критерий знаков, где происходит сравнение величин двух попарно сопряжённых совокупностей (зависимых выборок), т. е. таких совокупностей, которые объединены некоторой связью, общим свойством. Это могут быть результаты одних и тех же испытуемых по двум каким-то разным видам деятельности, балловые оценки, выставленные учителем за двукратное выполнение одной и той же или различных работ одной и той же группой учащихся [7].

Проверяется гипотеза H0: время сборки трёхмерной модели робота в LDD занимает больше времени, чем время сборки реальной модели, при альтернативе H1: время сборки виртуальной модели в LDD изменилось в отличии от времени сборки реальной (материальной) модели. Данные задачи представлены в таблице 1. Нулевая гипотеза принимается на уровне значимости 0,05. Подсчитаем число минусов, как встречающихся наименее часто: Zнабл=2, что говорит о преимущественном преобладании величин чисел второго столбца. По таблице «Критические значения статистики критерия знаков находим значение Z0,05(10) = 2. Получили, что эмпирическое (наблюдаемое) значение не больше критического, а это значит мы отклоняем нулевую гипотезу и принимаем альтернативную, что позволяет сделать вывод о том, что скорость разработки робота с применением трёхмерного-моделирования в LLD превосходит сборку с использованием набора-конструктора.


В статье рассматривается возможность автоматизированного проектирования LEGO-роботов в Studio 2.0 для использования в образовательной робототехнике.

Ключевые слова: трёхмерное моделирование, LEGO, Studio 2.0, образовательная робототехника.

The article discusses the possibility of creating LEGO-robots in Studio 2.0 for use in educational robotics.

Keywords: three-dimensional modeling, LEGO, Studio 2.0, educational robotics.

Робототехника в образовании на сегодняшний день это инструмент научно-технического образования школьников и представляет из себя технологии интеграции механики, электроники и программирования, позволяющая выявлять и проводить начальное воспитание инженерных талантов. В образовании наиболее популярными наборами конструирования механизмов и роботов на данный момент являются продукты компании LEGO, т. к. они охватывает весь контингент детей и довольно прост для вхождения в робототехнику. Это очень качественный продукт, с которым дети играют с пользой для развития логики, пространственного воображения и моторики пальцев.

В образовательном процессе у педагогов по LEGO робототехнике, да и самих обучающихся существует необходимость в моделировании роботов серии LEGO. Необходимость использования может быть обусловлена в сохранения конструкции в виде трёхмерной модели, создании инструкции по сборке, нехватки технического оборудования или когда необходима демонстрация некоторых частей конструкций робота. Сценарии использования на этом не заканчиваются. Таким образом, актуальность статьи определена необходимостью в моделировании робототехнических систем LEGO.


Рис. 1. Окно программы Studio 2.0

У компании LEGO для автоматизированного проектирования роботов LEGO есть собственный CAD Lego Digital Designer (LDD), распространяющийся бесплатно. LDD — это огромный «сундук» с сотнями деталей LEGO в одном месте, возможность собирать модели из тех деталей, которых просто не хватает или так и не получилось приобрести [1]. Возможности данного CAD мы рассматривали в другой статье [2]. Объектом изучения данной статьи будет бесплатный CAD Studio 2.0 интернет-платформы «BrickLink» [3].

Studio 2.0 представляет из себя мощный инструментарий дающий возможность собрать модель, проверить её на стабильность (прочность), сделать pdf инструкцию для сборки, а также подготовить фотореалистичный рендер конструкции или даже анимацию процесса сборки. Программа умеет экспортировать модель в формате ldr, понимающие другие редакторы (Lego Digital Designer, LDraw и другие) ну и импортировать соответственно. Интерфейс можно условно разделить на четыре части. Верхняя часть представляет из себя три панели:

  1. классическое горизонтальное меню приложения, где есть инструменты работы с файлом, с настройками, отображением и т. д.;
  2. панель с важными инструментами;
  3. панель открытых моделей для быстрого переключения между моделями.

Наибольший интерес представляет панель с основными инструментами: набор инструментов выделения (select) — это список инструментов с различными вариантами выделения (обычный, по цвету, по типу, по цвету и типу, по соединению, инвертировать выделение); поворот (hinge) — инструмент для поворота деталей на нужный угол по нужной оси вращения; клонирование (clone) — создание копии выделенной детали; скрытие (hide) — отключение отображения деталей; присоединения (connect) — инструмент, который подсказывает какую часть и куда можно сцепить; коллизии (collision) — инструмент включения или выключения коллизии, который помогает в случаях, когда на реальной модели робота можно сцепить конструкцию из-за некоторого изгиба или люфта деталей, а при трёхмерном построении это не предусмотрено; сцепка (snap) — включение или выключение сцепки деталей; сетка (grid) — варианты сетки, на которой строится модель; рендер (render) — инструмент создания фотореалистичной картинки; стабильности (stability) — инструмент, благодаря котором можно увидеть слабые стороны конструкции в плане прочности (рис. 2); инструкция (instruction) — инструмент создания pdf инструкции; инструменты интернет-платформы «BrickLink» — это доступ к своему аккаунту и «My Studio».


Рис. 2. Отображение стабильности (прочности)

«My Studio» представляет из себя некоторое облако с выгруженными туда своими работами, где всегда их там можно будет найти. Свои работы можно представить на «Studio Gallery», где возможно скачать файл модели, если автор готов им делиться, покрутить её в 3D или запустить пошаговую сборку в 3D.

Благодаря инструменту рендера фотореалистичного изображения (render) модели можно с помощью трёх разных режимов подготовить качественные изображения модели робота в разных ракурсах, в разных степенях проработанности и даже создание анимации пошаговой сборки.


Рис. 3. Изображение после рендера в режиме POV-RAY

В левой части интерфейса программы находится панель с деталями и необходимые инструменты для удобного поиска нужных (фильтры по категориям, поиск). Неприятный момент при поиске деталей заключается в том, что детали все окрашены в один цвет. Это создаёт некоторые сложности при поиске в большом листе деталей.

В правой части располагается панели «Color pallete» и «Step list» Панель «Color pallete» даёт возможность установить любой цвет детали. Панель «Step list» отображает пронумерованный список шагов, где каждый шаг хранит в себе все необходимые детали или даже целую подмодель. В результате эти шаги образуют пошаговую инструкцию.

Последняя часть — это рабочее пространство, область интерфейса, где пользователь строит модель. Тут доступны дополнительные возможности. Например, возможно добавлять окна просмотра (viewport), чтобы видеть модели с разных ракурсов. Кроме того, есть информация о полном названии выделенной детали, номер детали с ссылкой на магазин «BrickLink», кнопки для фильтрации в панели деталей, подходящих для выделенной детали или альтернативных, а также кнопка, которая позволяет скопировать и отзеркалить выделенное.

Отдельно остановимся на инструменте создания инструкций (рис. 4). Это довольно функциональный и понятный инструментарий. Здесь пользователь может изменить шаги и подготовить вёрстку pdf-документа, например: выбрать формат листа, поменять ракурс на каждом отдельном шаге, изменить масштаб, создавать листы (например, титульный лист, лист с деталями и т. д.) и многое другое. Файл модели имеет формат расширения io, где все изменения, происходящие над инструкцией, всегда сохраняются, а если была допущена какая-то ошибка, то можно всегда отредактировать.


Рис. 4. Интерфейс работы с инструкцией

Подытоживая обзор CAD Studio 2.0, конечно, кроме плюсов, заключающихся в сильном функционале есть некоторые минусы. Например, неудобный поиск деталей из-за единого цвета в панели деталей, некоторые баги в сцеплении деталей друг с другом, но критических багов или недоработок, из-за которых нельзя было бы работать — нет. В заключение отметим, что интерфейс не переведён на русский язык, а это дополнительно создаёт проблемы в освоении и так непростых инструментах этого CAD. Программа вышла в свет с июля 2018 года и по сравнению с Lego Digital Designer постоянно обновляется: решаются проблемы, баги, проводится оптимизация, реализуется новый функционал. Знакомить детей с моделированием LEGO роботов, конечно, стоит с LDD, в котором интуитивно понятный интерфейс, простой функционал. Использовать Studio 2.0 следует преподавателям робототехники однозначно в силу его больших функциональных возможностей, которые упрощают работу, а также из-за мощнейшей работы по созданию pdf инструкций, необходимых для новичков в робототехнике. Использование детьми Studio 2.0 следует, если они хорошо изучили LDD и построение трёхмерных моделей у них не вызывает особых сложностей, а также готовы сами приступить к созданию инструкций к своим разработкам, с которыми они готовы поделиться.

Основные термины (генерируются автоматически): LEGO, CAD, LDD, модель, POV-RAY, выделенная деталь, образовательная робототехника, панель деталей, пошаговая сборка, файл модели.

Большинство людей старшего поколения уже давно знакомы с конструктором LEGO как через своих детей и внуков, так и через личный опыт. Однако, наверняка найдутся те, кто не смог ощутить всю радость и приятные ощущения от сборки набора во времена своего детства. Но результаты технического прогресса дают возможность без затрат строить самоделки из конструктора на виртуальном «столе» (а с сегодняшними ценами на LEGO это особенно актуально). Для этого достаточно иметь даже не самый мощный или дорогой компьютер.

Итак, компьютер есть, органы управления в виде клавиатуры и мышки есть - осталось установить соответствующую программу. В этой статье мы разберём тот софт, с которого начинал я сам и которым пользуются многие виртуальные (и не только) самодельщики – Lego Digital Designer (он же LDD). Виртуальный редактор существует с 2004 года, а с 2010 года и поныне используется четвёртая генерация. Последняя полноценная программа этой генерации имеет версию 4.3.11. Существующая сейчас на официальном сайте LEGO версия 4.3.12. является очень сырой и неполноценной, поэтому она не будет затронута в статье, и следует скачать 4.3.11. для нормальной работы.

Установка редактора версии 4.3.11. на Windows 10 имеет иной порядок действий, чем на Windows 7 или XP. Это связано Adobe Flash Player и его версии ActiveX, не поддерживающейся в "десятке", но поддерживающейся в "семёрке". Пункты "1" , "2" , и " 6.1 " необходимы только для установки на Windows 10 .

1. Правой кнопкой мыши щёлкаем по установщику "setupldd-pc-4_3_11.exe" и среди перечня действий выбираем пункт "Извлечь в setupldd-pc-4_3_11" (необходим архиватор WinRAR или 7z).

2. Открываем получившуюся папку. В ней 3 файла: "install_flash_player_active_x.exe", "LDDSetup.exe", и "OpenGLChecker.exe". Удаляем в папке "install_flash_player_active_x.exe", а файл "OpenGLChecker.exe" переименовываем в "install_flash_player_active_x".

3. После запуска установщика, мастер установки рекомендует закрыть другие программы для обновления системных файлов без необходимости перезагружать компьютер. Смело нажимаем "Next".

1. Правой кнопкой мыши щёлкаем по установщику "setupldd-pc-4_3_11.exe" и среди перечня действий выбираем пункт "Извлечь в setupldd-pc-4_3_11" (необходим архиватор WinRAR или 7z).

После загрузочного экрана нас встречает главное меню: на переднем плане расположены три раздела, которые отличаются лишь наполнением деталей и выбором палитры. На заднем плане - наш виртуальный рабочий стол (или же "сцена"), на котором и будут собираться самоделки. Кнопка с папкой означает "открыть", то есть выбрать файл из некой директории. Кнопка с файлом открывает сам рабочий стол.

1. Синее окошко - классический раздел. Присутствует ограниченный ассортимент деталей, но каждая деталь дублируется в нескольких цветах и имеют предустановленные декали. Именно его я использовал в начале своего хобби, не зная о существовании раздела "Universe", но об этом чуть ниже. Ныне классическая часть редактора не используется.
2. Белое окошко - проектирование различных роботов и установок на основе системы Mindstorms ( с англ. мозговой штурм). Имеет ещё более ограниченный выбор деталей и ещё более ограниченный выбор цветов в них, с декалями та же история. Ныне имеет ограниченное использование.
3. Чёрное окошко - расширенный раздел (собственно, что "extended" и означает). Сейчас является основным и используется в полной мере ввиду максимального объёма деталей, возможности выбора цвета из доступной палитры, и наличия списка декалей доступных для конкретной детали. Рассматривать интерфейс и основы управления буду именно в Extended.

Нажимаем на кнопку с файлом и попадаем на виртуальный сборочный цех. Начнём с основного - с нашего рабочего стола. Он сделан в виде большой пластины размером 32х32 пина (или студов, или пупырышков - кому как удобнее). По четырём сторонам расположены стрелки для вращения камеры, но их в управлении рекомендую не использовать, т.к. это попросту неудобно. Внимание: вращается не сам стол, а именно камера вокруг стола. В самом низу расположен счётчик деталей . Интересно то, что программа хоть и не кушать много, но больше количество объёмных деталей вкупе с настроенной детализацией (об этом ниже) могут сказаться на работе программы и дальнейшем строительстве. Однако, никто же сначала не строит работы на десять тысяч деталей, правильно?

Слева от рабочего пространства - категории с деталями . Эту колонку можно расширить вширь в правую сторону. Каждая категория отображает конкретный или условный тип деталей: кубики, пластины, скосы, минифигурки, и т.д.
Над категориями - наименование раздела, строка поиска , в которой можно забить либо номер детали, либо её наименование на английском, а также три колонки: "Bricks", "Templates", "Groups". Первая колонка у нас выбрана сейчас, вторая предназначена для сохранения шаблонов, которые могут пригодится при строительстве, а в третьей можно разделить и сохранить получившуюся модель на группы и подгруппы при её цельном виде на рабочем столе.
Под категориями - кнопки " открыть/скрыть все детали " и " фильтр цвета деталей ". В случае с классическим режимом фильтр и правда работает как фильтр, но в расширенном он окрашивает все детали в выбранный пользователем цвет (изначально все детали в extended-разделе покрашены в красный). Ползунок справа от кнопок - масштабирование, то есть чем левее ползунок уходит, тем визуальный масштаб деталей меньше, но их больше помещается в одно поле.
Двойная стрелочка от строки поиска - скрыть сегмент с категориями.

Средняя часть и самая основная по функциям. Несколько кнопок имеют дополнительные назначения, которые и будут указаны в порядке слева направо. Для демонстрации некоторых функций мне поможет небольшая модель машинки.

Первая кнопка - курсор (V). У курсора имеются следующие допназначения:
1.1. Курсор выбора и перемещения одной детали.
1.2. Выбор нескольких деталей.
1.3. Проверка соединения.
1.4. Выделение деталей одного цвета.
1.5. Выделение деталей одного типа.
1.6. Выделение деталей одного цвета и типа.
1.7. Выделить все объекты.
Вторая кнопка - копирование (C). При нажатии на деталь рядом появляется её копия.

Третья кнопка - вращение (H). Позволяет что-то открывать/закрывать/поднимать/опускать при наличии в модели вращательных деталей или конструкций. Имеет три строки измерения по осям XYZ. Угол можно задать как по стрелочкам, как по "циферблату" в левом верхнем углу, так и задать угол вручную.
Четвёртая кнопка - выравнивание осей (Shift+H). Позволяет визуализировать работу простых механических систем (например, работу шестерней) или соединить две отдельные точки.
Пятая кнопка - сгибание (комбинации клавиш нет). Позволяет сгибать шланги и т.н. "флексы" - полые гнущиеся трубочки. Как и выравнивание осей данная функция работает немного нестабильно. Рекомендую её не использовать вовсе, т.к. на ресурсе Mecabricks возможность сгибать резиночки и флексы реализована более удобно.

Шестая кнопка - палитра и декалирование. В ней есть следующие допназначения:
6.1. Выбор и возможность окрашивания (B). Пользователю предоставляется палитра из четырёх категорий цветов: однотонные, прозрачные, металлик, и устаревшие.
6.2. Пипетка. Даёт возможность узнать выбрать необходимый из модели цвет, если он вам неизвестен или его нет в стандартной палитре цветов.
6.3. Декалирование. При нажатии на деталь пользователю становится виден список доступных для неё декалей.
Седьмая кнопка - скрыть деталь (L). Позволяет скрыть деталь не удаляя её и не вынимая из конструкции. Очень помогает в объёмных постройках. Использование данной функции сопровождается небольшой иконкой минифигурки с закрывшимся руками лицом в правом верхнем углу.
Восьмая кнопка - удалить деталь (D).

Теперь перейдём к настройкам. В меню настроек можно перейти либо через "Edit" -> "Preferences", либо через комбинацию клавиш "Ctrl+6".

1. Show information field - добавляет информационное поле в нижнюю часть экрана, содержащее информацию о выбранных вами деталях или количестве деталей на столе.
2. Show tooltips - добавляет метки рядом с курсором мыши, разъясняя, как работают различные кнопки.
3. Enable sound in the application - отключить звуки в программе.
4. “Keys for turning” shown along with cursor - на курсоре отображается значок клавиатуры, указывающий на поворот.
5. Repeat inserting selected bricks - последняя выбранная деталь "приклеивается" к курсору и, щёлкнув левой кнопкой мыши, делает её копию.
6. Brick Count - показывает количество деталей.
7. Invert camera X­-axis - инвертировать движение камеры относительно оси X мыши (влево/вправо).
8. Invert camera Y-­axis - инвертировать движение камеры относительно оси Y мыши (вверх/вниз).
9. High-­quality rendering of bricks placed in scene - высокое качество визуализации деталей на столе.
10. High­-quality rendering of bricks in the Brick palette - высокое качество визуализации деталей в палитре.
11. Outlines on bricks - контуры на деталях.
12. Advanced shading - улучшенные тени на деталях.
13. Choose language - выбор языка интерфейса (английский/немецкий).
14. Compatibility mode - безопасный режим. Использовать следует лишь в том случае, если возникли проблемы с запуском LDD.
15. Reset preferences - возврат настроек по умолчанию.

Теперь, когда вы ознакомились с базовым интерфейсом LEGO Digital Designer, перед строительством осталось узнать основные клавиши управления клавиатуры и мыши:

Левая кнопка мыши (ЛКМ):
Нажмите на деталь, чтобы её выбрать.
Нажмите и перетащите, чтобы переместить деталь по столу.
Правая кнопка мыши (ПКМ):
Нажмите и удерживайте, чтобы повернуть вид камеры.
Средняя кнопка мыши (СКМ):
Увеличение/уменьшение масштаба сцены.

Кнопки на дополнительной клавиатуре (Num Lock):
Кнопки "2", "4", "6", "8" - поворот камеры вниз, влево, вправо, вверх.
Кнопка "5" - возвращение камеры в стандарное положение с видом на все детали и модели, расположенные на столе.

Кнопки на клавиатуре:
Кнопки "стрелка вверх", "стрелка вниз", "стрелка вправо", "стрелка влево" - вращение детали.
Ctrl+I - импорт модели в открытый файл.
Ctrl+Shift+S - сохранить как. (выбор формата).

Не рекомендую использовать следующие клавиши или их сочетание: "Ctrl+K" (скриншот), F6 (режим просмотра), F7 (создание инструкции, т.к. порядок действий зачастую бывает нелогичным или неправильным).

Итог: несмотря на всю простоту программы и прекращение поддержки, LEGO Digital Designer всё ещё можно использовать в качестве простого виртуального редактора. Конечно, и по возможностям и по технологичности он уступает тому же Stud.io, но за весь мой 11-летний опыт работы у меня ни разу не было мысли о том, что нужен более усовершенствованный виртуальный редактор. Под свои цели и задачи LDD и сейчас является удобной программой для разработки самоделок.


Пандемия коронавируса COVID-19 внесла большие коррективы в разные сферы жизнедеятельности человека и сфера образования не исключение. Повсеместный переход на дистанционное обучение создает не мало трудностей как для учащихся, так и для преподавателей. Последние несколько месяцев одним из важных вопросов для преподавателей образовательной робототехники являются вопрос «Как работать?»

Уже несколько лет рассматриваются разные варианты для проведения занятий по робототехнике не только с реальными конструкторами, но и с использованием разных симуляторов и других инструментов. Нельзя сказать, что выбор доступных средств достаточно широк. Однако, за последнее время наблюдается тенденция развития данных направлений.

Даже при наличии реальных конструкторов, использование эмуляторов и других инструментов конструирования развивает ряд других навыков, добавляет новые возможности при изучении робототехники.

Образовательная робототехника включает в себя две главные части: конструирование и программирование.

Систем автоматизированного проектирования (САПР), используемых в образовательной робототехнике, немало, и выбор инструмента зачастую зависит от робототехнической платформы, на которой работает преподаватель, возраста учащихся и целей занятий [1].

Например, для подготовки проектной документации для Lego существует Lego Digital Designer (LDD) (Рисунок 1). Программа достаточно проста в освоении и имеет интуитивно понятный интерфейс. Функционала программы вполне достаточно для сборки роботов Lego. Полезной функцией является то, что после полной сборки робота формируется инструкция, которую можно выгрузить из программы и просматривать через текстовые редакторы [2].

Интерфейс программы Lego Digital Desinger

Рис. 1. Интерфейс программы Lego Digital Desinger

Для конструкторов VEX используют другие САПР. Наиболее популярная система на текущий момент SnapCAD для VEX IQ (Рисунок 2). Достаточно простая в использования, содержит библиотеку элементов VEX IQ, есть возможность создать свои детали и распечатать их на 3D-принтере.

Если же занятия проходят на конструкторах «старших» серий VEX, то для проектирования можно использовать САПР с расширенным функционалом, такие как Inventor [3].

SnapCAD для VEX IQ

Рис. 2. SnapCAD для VEX IQ

Однако, и работая с другими робототехническими конструкторами, можно использовать симуляторы, где можно отрабатывать как простые, так и сложные действия. В основном, все симуляторы, обладающие расширенным функционалом (возможностью создавать физическую среду, загружать собственные полигоны и модели роботов), можно назвать «условно бесплатными», т. е. у них есть бесплатный период использования.

Симуляторы Virtual Robotics Toolkit (Рисунок 3). Имеет возможность импорта моделей из LEGO Digital Designer, что является безусловным плюсом если использовать LDD в качестве конструктора. Поддержка программирования роботов комплекта EV3G, так же в программе есть базовые симуляции (полигоны).

Virtual Robotics Toolkit - an Advanced LEGO Mindstorms Simulator • Smashing Robotics

Рисунок 3. Virtual Robotics Toolkit

Отдельно стоит отметить среду программирования роботов с интерактивным режимом имитационного моделирования TRIK Studio (Рисунок 4). Разработана на русском языке имеется реализация для конструкторов ТРИК, Lego Mindstorms, большая библиотека методических разработок может послужить отличным справочным и дидактическим материалом при проведении занятий. Так же есть возможность загрузки собственных полигонов. Программирование осуществляется в Scratch-подобной среде или на текстовых языках программирования.

TRIK Studio

Рис. 4. TRIK Studio

Безусловно, использование симуляторов не сможет заменить живого занятия с конструкторами, но это может являться отличным аналогом в силу определенных обстоятельств. В виртуальных средах возможно изучать конструирование без оборудования, при наличии только интернет-соединения и ПК. Изучение возможностей систем автоматизированного проектирования (САПР) дает возможности дальнейшего улучшения моделей [4].

Виртуальные программные симуляторы позволяют отлаживать программы быстрее, что в последствии дает возможность тестировать их реальных роботах.

Дети с повышенной мотивацией к изучению дисциплины имеют возможность дома в любое время заниматься проектированием, конструированием и написанием кода. Что, несомненно, ускоряет усвоение материала. Изучение САПР стимулирует развитие различных навыков, умений, развивает кругозор.

Основные термины (генерируются автоматически): VEX, LDD, TRIK, образовательная робототехника, LEGO, автоматизированное проектирование, возможность, проведение занятий, расширенный функционал, Рисунок.

Похожие статьи

Роль робототехники в образовательном процессе

Робототехника является прикладной наукой, занимающейся разработкой автоматизированных технических систем и являющаяся важнейшей технической основой интенсификации производства [3]. Робототехника опирается на такие дисциплины, как электроника, механика, программирование. Образовательная робототехника — это инструмент, закладывающий прочные основы системного.

Трёхмерное моделирование LEGO-роботов в Studio 2.0

В статье рассматривается возможность автоматизированного проектирования LEGO-роботов в Studio 2.0 для использования в образовательной робототехнике.

У компании LEGO для автоматизированного проектирования роботов LEGO есть собственный CAD Lego Digital Designer (LDD), распространяющийся бесплатно. LDD — это огромный «сундук» с сотнями деталей LEGO в одном месте, возможность собирать модели из тех.

Трёхмерное моделирование Lego-роботов в Lego Digital Designer

 В статье рассматривается возможность автоматизированного проектирования Lego-роботов в Lego Digital Designer для использования в образовательной робототехнике. Робототехника в образовании на сегодняшний день это инструмент инженерного образования школьников. Робототехника — это технология интеграции механики, электроники и программирования.

Применение технологии лего-конструирования и робототехники.

Лего-конструктор дает возможность не только собрать игрушку, но и играть с ней. Используя детали не одного, а двух и более наборов лего, можно собирать

Данные формы активно используются на занятиях по лего-конструированию и робототехники. Один из конструкторов для старших групп «Простые механизмы».

Lego-конструирование позволяет в полном объеме реализовать применение современных информационных и коммуникационных технологий для.

Особенности выбора технических средств обучения.

Ключевые слова: робототехника, LEGO, VEX, Arduino, конструктор. На текущий момент образовательная робототехника активно развивается. Содержание программ преподавания в Казахстане варьируется и основывается на

Конструктор Mindstorms EV3 обладает широкими возможностями для творчества благодаря совместимости с другими конструкторами LEGO и представляет собой комплексное решение для обучения подростков основам робототехники.

Внедрение образовательной робототехники в деятельность.

В чём цель занятий робототехникой в детском саду? Ребёнку интересно собственными руками создать настоящего робота и понаблюдать за результатом своих трудов. А перед педагогом стоит другая задача: познакомить детей с основами программирования, развить конструкторские навыки, логику, целеустремлённость, уверенность в себе. Робототехника — это идеальное сочетание развлечения с развитием, удовольствия с пользой.

Применение конструирования и программирования.

кабинета и учебного оборудования для занятий по робототехнике. Эти специалисты должны уметь анализировать цели и содержание курсов информатики, физики и

в различных типах образовательных учреждений на базовом и профильном уровнях с использованием возможностей робототехнических

Образовательная робототехника — сравнительно новая область, как в технике, так и в педагогической науке и занимается проблемами.

Обзор программируемого комплекта робототехники Lego

Образовательная робототехника — сравнительно новая область, как в технике, так и в педагогической науке и занимается проблемами организации учебного процесса и внеурочной деятельности по обучению роботам. Организация процесса обучения невозможно без соответствующих образовательных ресурсов и средств. Начиная с 1960-х годов, кубики LEGO использовали в школе для преподавания различных дисциплин.

Возможности использования образовательной.

LEGO, образовательная робототехника, VEX, учебный процесс, дополнительное образование, профессиональное образование, робототехническое оборудование, техническое творчество

физика, образовательная робототехника, инженерное мышление. Возможности использования образовательной робототехники в преподавании физики. Поэтому, внедрение робототехники в учебный процесс и.

Читайте также: