Конструктор блок питания на 30 вольт

Обновлено: 14.05.2024

Первый обзор. Сборка силового модуля. Плата, радиатор, силовой транзистор, 2 переменных многооборотных резистора и зеленый трансформатор (из Восьмидесятых ®) Как подсказал мудрый kirich, я самостоятельно собрал схему, которую китайцы продают в виде конструктора, для сборки блока питания. Я сначала расстроился, но потом решил, что, видать схема хороша, раз китайцы её копируют… В то же время вылезли и детские болячки этой схемы (которые полностью были скопированы китайцами), без замены микросхем на более «высоковольтные», на вход нельзя подавать больше 22 вольт переменного напряжения… И несколько более мелких проблем, которые подсказали мне наши форумчане, за что им огромное спасибо. Совсем недавно будущий инженер "AnnaSun" предложила свою версию избавления от трансформатора. Конечно каждый может модернизировать свой БП как угодно, можно и импульсник поставить в качестве источника питания. Но у любого импульсника (быть может кроме резонансных) на выходе куча помех, и эти помехи частично перейдут на выход ЛабБП… А если там имульсные помехи, то (ИМХО) это не ЛабБП. Потому я не буду избавляться от «зеленого трансформатора».

Поскольку это линейный блок питания, у него есть характерный и существенный недостаток, вся лишняя энергия выделяется на силовом транзисторе. Для примера, на вход мы подаем 24В переменного напряжения, которое после выпрямления и сглаживания превратится в 32-33В. Если на выход присоединить мощную нагрузку, потребляющую 3А при напряжении 5В, вся оставшаяся мощность (28В при токе 3А), а это 84Вт, будет рассеиваться на силовом транзисторе, переходя в тепло. Одним из способов предотвратить эту проблему, и соответственно повысить КПД, это поставить модуль ручного или автоматического переключения обмоток. Данный модуль был рассмотрен в 2-м моем обзоре:
Для удобства работы с блоком питания и возможности мгновенного отключения нагрузки, с схему был введен дополнительный модуль на реле, позволяющий включать или выключать нагрузку. Этому был посвящен мой третий обзор.

К сожалению, из-за отсутствия нужных реле (нормально замкнутых), данный модуль работал некорректно, потому он будет заменен другим модулем, на D-триггере, позволяющий включать или выключать нагрузку при помощи одной кнопки.

Вкратце расскажу про новый модуль. Схема довольно известная (прислали мне ссылку в личку):

Немножко модифицировал её под свои нужды и собрал такую плату:

С обратной стороны:

На это раз никаких проблем не было. Все работает очень четко и управляется одной кнопкой. При подаче питания, на 13 выходе микросхемы всегда логический ноль, транзистор (2n5551) закрыт и реле обесточено — соответственно нагрузка не подключена. При нажатии кнопки, на выходе микросхемы появляется логическая единица, транзистор открывается и реле срабатывает подключая нагрузку. Повторное нажатие на кнопку возвращает микросхему в исходное состояние.

Какой же блок питания без индикатора напряжения и тока? Потому в 4-м обзоре я попытался сделать ампервольтметр самостоятельно. В принципе получился неплохой прибор, однако он имеет некоторую нелинейность в диапазоне от 0 до 3.2А. Эта погрешность никак не будет влиять при использовании данного измерителя, скажем в зарядном устройстве для АКБ автомобиля, но недопустима для Лабораторного БП, потому, я заменю этот модуль, китайскими щитовыми прецизионными вольтметром и амперметром с дисплеями, имеющими 5 разрядов… А собранный мною модуль найдет применение в какой-нибудь другой самоделке.

Наконец-то приехали из Китая более высоковольтные микросхемы, о чем я Вам рассказал в 5-ом обзоре. И теперь можно подавать на вход 24В переменного тока, не опасаясь, что пробьет микросхемы…


Теперь дело осталось за «малым», изготовить корпус и собрать все блоки вместе, чем я и займусь в этом финальном обзоре по данной тематике.
Поискав готовый корпус, ничего подходящего не нашел. У китайцев есть неплохие коробки, но, к сожалению, цена их, а особенно стоимость доставки — запредельная…

Отдать китайцам 60 баксов мне «жаба» не позволила, да и глупо такие деньги отдавать за корпус, можно еще немного добавить и купить готовый ЛабБП. По крайней мере, корпус из этого Бп выйдет хороший.

Потому я поехал на строительный базар и купил 3 метра алюминиевого уголка. С его помощью будет собран каркас прибора.
Подготавливаем детали нужного размера. Расчерчиваем заготовки и спиливаем уголки при помощи отрезного диска. Обзор на мою версию дремеля.


Затем выкладываем заготовки верхней и нижней панели, чтобы прикинуть, что получится.

Пробуем расположить модули внутри

Сборка идет на потайных винтах (под шляпку зенкером, разенковывается отверстие, что бы головка винта не выступала над уголком), и гайках с обратной стороны. Потихоньку появляются очертания каркаса блока питания:

И вот каркас собран… Не очень ровный, особенно по углам, но думаю, что покраска скроет все неровности:

Размеры каркаса под спойлером:






К сожалению времени мало свободного, потому слесарные работы продвигаются медленно. Вечерами за неделю изготовил лицевую панель из листа алюминия и панельку под вход питания и предохранитель.



Расчерчиваем будущие отверстия под Вольтметр и Амперметр. Посадочное гнездо должно быть размерами 45.5мм на 26.5мм
Обклеиваем посадочные отверстия малярным скотчем:

И отрезным диском, при помощи дремеля делаем пропилы (скотч нужен, что бы не выйти за размеры гнезд, и не испортить панель царапинами) Дремель быстро справляется с алюминием, но на 1 отверстие уходит 3-4 отрезных диска

Опять была заминка, банально, кончились отрезные диски для дремеля, поиск по всем магазинам Алматы ни к чему не привел, потому пришлось ждать диски из Китая… Благо пришли быстро за 15 дней. Дальше работа пошла более весело и быстро…
Пропилил дремелем отверстия под цифровые индикаторы, и обработал напильником.

Ставим на «уголки» зеленый трансформатор

Примеряем радиатор с силовым транзистором. Он будет изолирован от корпуса, так как на радиаторе установлен транзистор в корпусе ТО-3, а там сложно изолировать коллектор транзистора от корпуса. Радиатор будет стоять за декоративной решеткой с вентилятором охлаждения.


Обработал наждачкой на бруске лицевую панель. Решил примерить все что будет на ней закреплено. Получается вот так:

Два цифровых измерителя, кнопка включения нагрузки, два многооборотных потенциометра, выходные клеммы и держатель светодиода «Ограничение тока». Вроде ничего не забыл?

С обратной стороны лицевой панели.
Разбираем все и красим черной краской с баллончика каркас блока питания.

На заднюю стенку прикрепляем на болты декоративную решетку (куплено на авторынке, анодированный алюминий для тюнига воздухозабора радиатора 2000 тенге (6.13USD))

Вот так получилось, вид с обратной стороны корпуса блока питания.

Ставим вентилятор для обдува радиатора с силовым транзистором. Я прикрепил его на пластиковые черные хомуты, держит хорошо, внешний вид не страдает, их почти не видно.

Возвращаем на место пластиковое основание каркаса с уже установленным силовым трансформатором.

Размечаем места крепления радиатора. Радиатор изолирован от корпуса прибора, т.к. на нем напряжение равное напряжению на коллекторе силового транзистора. Думаю, что он хорошо будет обдуваться вентилятором, что позволит значительно снизить температуру радиатора. Вентилятор будет управляться схемой снимающей информацию с датчика (терморезистора) закрепленного на радиаторе. Таким образом вентилятор не будет «молотить» в пустую, а будет включатся при достижении определенной температуры на радиаторе силового транзистора.

Прикрепляем на место лицевую панель, поглядеть что получилось.

Декоративной решетки осталось много, потому решил попробовать сделать П-образную крышку корпуса блока питания (на манер компьютерных корпусов), если не понравится, переделаю на что-нибудь другое.

Вид спереди. Пока решетка «наживлена» и еще не плотно прилегает к каркасу.

Вроде неплохо получается. Решетка достаточно прочная, можно смело ставить сверху что-либо, ну а про качество вентиляции внутри корпуса, даже не стоит говорить, вентиляция будет просто отличная, по сравнению с закрытыми корпусами.

Ну чтож, продолжаем сборку. Подключаем цифровой амперметр. Важно: не наступайте на мои грабли, не используйте штатный разъем, только пайка непосредственно к контактам разъема. Иначе будет в место тока в Амперах, показывать погоду на Марсе.

Провода для подключения амперметра, да и всех остальных вспомогательных устройств должны быть максимально короткими.
Между выходными клеммами (плюс-минус) установил панельку из фольгированного текстолита. Очень удобно прочертив изолирующие бороздки в медной фольге, создавать площадки для подключения всех вспомогательных устройств (амперметр, вольтметр, плата отключения нагрузки и т.п.)

Основная плата установлена рядом с радиатором выходного транзистора.


Плата переключения обмоток установлена над трансформатором, что позволило значительно сократить длину шлейфа проводов.

Наступил черед собрать модуль дополнительного питания для модуля переключения обмоток, амперметра, вольтметра и т.п.
Поскольку у нас линейный — аналоговый БП, будем использовать так же вариант на трансформаторе, никаких импульсных блоков питания. :-)
Вытравливаем плату:

Впаиваем детали:

Тестируем, ставим латунные «ножки» и встраиваем модуль в корпус:


Ну вот, все блоки встроены (кроме модуля управления вентилятором, который будет изготовлен позже) и установлены на свои места. Провода подключены, предохранителя вставлены. Можно проводить первое включение. Осеняем себя крестом, закрываем глаза и даем питание…
Бабаха и белого дыма нет — уже хорошо… Вроде на холостом ходу ничего не греется… Нажимаем кнопку включения нагрузки — зажигается зеленый светодиод и щелкает реле. Вроде все пока нормально. Можно приступать к тестированию.


Как говорится, «скоро сказка сказывается, да не скоро дело делается». Опять выплыли подводные камни. Модуль переключения обмоток трансформатора работает некорректно с силовым модулем. При напряжении переключения с первой обмотки на следующую происходит скачек напряжения, т.е при достижении 6.4В происходит скачек до 10.2В. Потом конечно можно уменьшить напряжение, но это не дело. Сначала я думал, что проблема в питании микросхем, поскольку их питание тоже от обмоток силового трансформатора, и соответственно растет с каждой последующей подключенной обмоткой. Потому попробовал дать питание на микросхемы с отдельного источника питания. Но это не помогло.
Потому есть 2 варианта: 1. Полностью переделать схему. 2. Отказаться от модуля автоматического переключения обмоток. Начну с 2 варианта. Полностью без переключения обмоток я остаться не могу, потому как вариант мириться с печкой мне не нравится, потому поставлю тумблер- переключатель позволяющий выбирать подаваемое напряжение на вход БП из 2-х вариантов 12В или 24В. Это конечно «полумера», но лучше чем вообще ничего.
Заодно решил поменять амперметр на другой подобный, но с зеленым цветом свечения цифр, поскольку красные цифры амперметра светятся довольно слабо и при солнечном свете их плохо видно. Вот что получилось:

Вроде так получше. Возможно, так же, что я заменю вольтметр на другой, т.к. 5 разрядов в вольтметре явно избыточно, 2 разряда после запятой вполне достаточно. Варианты замены у меня есть, так что проблем не будет.


Ставим переключатель и подключаем к нему провода. Проверяем.
При положении переключателя «вниз» — максимальное напряжение без нагрузки составило около 16В


При положении переключателя вверх — доступно максимальное напряжение для данного трансформатора 34В (без нагрузки)

Теперь ручки, долго не стал придумывать варианты и нашел пластмассовые дюбели подходящего диаметра, как внутреннего, так и внешнего.

Отрезаем трубочку нужной длины и надеваем на штоки переменных резисторов:

Затем надеваем ручки и фиксируем винтами. Поскольку трубка дюбеля достаточно мягкая, ручка фиксируется очень хорошо, что бы сорвать её необходимы значительные усилия.


Обзор получился очень большим. Потому не буду отнимать Ваше время и вкратце протестируем Лабораторный блок питания.
Помехи осциллографом мы уже смотрели в первом обзоре, и с тех пор ничего не изменилось в схемотехнике.
Потому проверим минимальное напряжение, ручка регулировки в крайнем левом положении:


Теперь максимальный ток


Ограничение тока в 1А


Максимальное ограничение тока, ручка регулировки тока в крайне правом положении:

На этом Всё мои дорогие радиогубители и сочувствующие… Спасибо всем, кто дочитал до конца. Прибор получился брутальный, тяжелый и я надеюсь надежный. До новых встреч в эфире!

UPD: Осциллограммы на выходе блока питания при включении напряжения:

И выключения напряжения:


UPD2: Друзья с форума «Паяльник» дали идею, как с минимальными переделками схемы запустить модуль переключения обмоток. Спасибо всем за проявленный интерес, буду доделывать прибор. Поэтому — продолжение следует.

Borodach

Вы можете написать сейчас и зарегистрироваться позже. Если у вас есть аккаунт, авторизуйтесь, чтобы опубликовать от имени своего аккаунта.
Примечание: Ваш пост будет проверен модератором, прежде чем станет видимым.

Последние посетители 0 пользователей онлайн

Топ авторов темы

Borodach 85 постов

boris_ka 47 постов

vg155 52 постов

kuzmitch 61 постов

Популярные посты

kuzmitch

kuzmitch

Ребята, всех с праздником ПОБЕДЫ. Ну что, доделал я его наконец то И лайка БП в комплекте с ПП ИИП прилагаю, может кому пригодится ЛБП.lay6

kuzmitch

kuzmitch

30 сентября, 2021

Всем привет! Запаял ПП с Китая. Все запустилось без бубна Хотя чему бы ему не запуститься, ПП то проверенная Единственное нужно ещё плату БП для показометров нарисовать. Ну и фоточки конечно.

alexeim2005

Как обещал выкладываю итоговые материалы: 1.Результаты Фото платы кита: Фото корпуса: Фото готовых плат смотрите ранее в теме, немного скорректированные платы и с

Изображения в теме

golota666

То есть, возможен вариант подключения датчика, когда выход датчика через резистор подключен на +пит (зачем?), и он становится как токовый?

RTF

Всё правильно, кроме одного: "нИкак" пишется так. Резюме: при подключении на 5-вольтовую линию нагрузки 10 Ом напряжения 5 и 12 В при полном напряжении сети в норме.

finn32

Это не пояснение, а безграмотная копипаста. Нинада. В чем конкретно я не прав? При "измерении" в любительских условиях кто контролирует, что микрофон в линейном режиме? И где можно посмотреть искажения конкретного капсюля из известных измерительных? Само преобразование в микрофоне суть процесс нелинейный. Насколько он нелинеен на конкретных частотах и при конкретных уровнях оценить довольно сложно хотя бы потому, что нужен эталон при прочих равных. А у кого он имеется дома?

Умклайдет

И вообще, С 2000 позволяет посмотреть состояние шс. Инструкция в помощь. И посмотрите архив событий. Там видо как вы ШС берете и реакцию системы при этом. А если циферки справа слева от 0 понажимать.

Iv T

Диего

Это надо к ноуту прибор(контроллер) подключать? По поводу работало раньше или нет, не могу сказать. Так как работаю здесь на предприятии недавно и насколько знаю раньше обслуживала все спец организация и претензий ни у кого не было. Но проблема обнаружилась когда пришлось датчики, в том числе и ручник, демонтировать и немного поставить в другое место, но кто демонтировал, он говорит даже провода не отсоединял, потом просто решил все проверить и вылезла такая проблема.

КЭС

Еще раз посмотрел фото приборов. На Сигнал-20 нет ни одного зеленого шлейфа. Возможно, там нет такой индикации. Но шлейф №3, похоже, в норме, судя по другим. Возвращаемся к вопросам: а оно раньше работало? Посмотреть бы конфигурацию контроллера (программой Pprog).

Описываемый блок питания предназначен для использования в радиолюбительской лаборатории. Несмотря на то, что в радиолюбительской литературе печаталось множество схем подобных устройств, данный блок питания не требователен к специализированным микросхемам и импортным элементам. В настоящее время вопрос приобретения микросхем по-прежнему актуален и в некоторых регионах, доставать их проблематично. Данный блок питания является модернизацией блока питания, описанным в ( II ). Блок питания собран только из доступных деталей.

Характеристики блока питания:
Выходное напряжение регулируется от 0 до 30 В.
Выходной ток 5 А.
Падение напряжения при токе от 1 А до 6 А ничтожно мало и на выходных показателях не отражается.

Схема блока питания показана на рис.1 ниже

Схема блока питания


Рис. 1

Данный блок питания содержит три основных узла: внутренний сетевой узел питания VD 1- VD 4, C 1- C 7, DA 1, DA 2, узел защиты от перегрузки и КЗ VS 1, R 1- R 4, VD 3 и основной узел – регулируемый стабилизатор напряжения VT 2- VT 7, VD 4- VD 5, R 4- R 14, C 8.

А так же к блоку питания добавляется цифровая панель, т.е. блок индикации, который показан на рис.5.

Внутренний сетевой узел питания построен по традиционной схеме с сетевым трансформатором Т1.

Узел защиты особенностей не имеет. Датчик тока рассчитывался на ток 3А, но можно его рассчитать и на 5А. Длительное время блок питания эксплуатировался с током 5А. Никаких сбоев в его работе не наблюдалось. Диод HL 1 индицирует перегрузку по току или КЗ в нагрузке.

Основной узел – регулируемый стабилизатор напряжения компенсационного типа. Он содержит входную дифференциальную ступень на транзисторах VT 5, VT 7, две ступени усиления на транзисторах VT 3 и VT 2, и регулирующий транзистор VT 1. Элементы VT 4, VT 6, VD 4, VD 5, R 5 - R 8, R 10 образуют стабилизаторы тока. Конденсатор С8 предотвращает самовозбуждение блока. Т.к. транзисторы VT 5 и VT 7 не подбирались одинаковыми, то имеется определенное «смещение нуля» этого каскада, которое и является минимальным напряжением блока питания. В небольших пределах оно регулируется с помощью подстроечного резистора R 7 и, в авторском варианте достигало на выходе блока питания приблизительно 47 m V . Выходное напряжение регулируется резистором R 13. Верхняя граница напряжения – подстроечным резистором R 14.

5-107-2.jpg


Рис. 2

Конструкция и детали. Мощность трансформатора Т1 должна быть не менее 100 – 160вт, ток обмотки II – не менее 4 – 6А. Ток обмотки III – не менее 1…2А. Диодную сборку RS 602 можно заменить на сборку RS 603 или диодами, рассчитанными на ток 10А. Диодный мост VD 2 можно заменить на любой из серии КЦ402 – КЦ405, которые приклеиваются со стороны печатных дорожек, зеркально конденсатору С1 и соединяются гибкими проводниками с контактными площадками VD 2 на плате. Транзистор VT 1 следует устанавливать на теплоотводе площадью не менее 1500см 2 . Площадь радиатора рассчитывается по формуле S = 10 I n ( U вх. – U вых. ), где S – площадь поверхности радиатора (см 2 ); I n – максимальный ток, потребляемый нагрузкой; U вх. – входное напряжение (В); U вых. – выходное напряжение (В).

Транзистор КТ825А – составной. Его можно заменить парой транзисторов, как показано на рисунке 2.

Данные транзисторы, соединенные по схеме Дарлингтона. Резистор R 4 подбирают экспериментально, по току срабатывания защиты. Резисторы R 7 и R 14 – многооборотные СП5-2. Резистор - R 13 любой переменный с линейной функциональной характеристикой (А). В авторском варианте применен переменный резистор ППБ-3А на 2,2К - 5% . Микросхемы DA 1 и DA 2 можно заменить аналогичными отечественными КР142ЕН5А и КР1162ЕН5А. Их мощность позволяет стабилизированное напряжение ± 5 В для питания внешних нагрузок с током потребления до 1А. Данной нагрузкой является цифровая панель, которая используется для цифровой индикации напряжения и тока в блоках питания. Если не использовать цифровую панель, то микросхемы DA 1 и DA 2 можно заменить микросхемами 78 L 05 и 79 L 05.

Печатная плата блока питания показана на рис.3 и рис.4.

Схема расположения элементов блока питания


Рис. 3

Печатная плата блока питания


Рис. 4

Налаживание. Так как конструкция расположена на двух печатных платах, сначала настраивают блок питания, затем блок цифровой индикации.

Блок питания. При исправных деталях и отсутствие ошибок в монтаже устройство начинает работать сразу после включения. Его налаживание заключается в установлении необходимых пределов изменения выходного напряжения и тока срабатывания защиты. Движки резисторов R 7 и R 13 должны находиться в среднем положении. Резистором R 14 по вольтметру добиваются показания 15 вольт. Затем движок резистора R 13 переводят в минимальное положение и по вольтметру резистором R 7 устанавливают 0 вольт. Теперь движок резистора R 13 переводят в максимальное положение и резистором R 14 по вольтметру устанавливают напряжение 30 вольт. Резистор R 14 можно заменить постоянным, для этого в плате предусмотрено место – резистор R 15. В авторском варианте это резистор 360 Ом. Размер печатной платы блока питания 110 х 75 мм . Диоды VD 3 – VD 5 можно заменить на диоды КД522Б.

Цифровая панель состоит из входного делителя напряжения и тока, микросхемы КР572ПВ2А и индикации из четырех семисегментных светодиодных индикаторов, показанных на рис 5. Резистор R 4 цифровой панели состоит из двух отрезков константанового провода ? =1мм и длиной 50мм. Разница в номинале резистора должна превышать 15 - 20%. Резисторы R 2 и R 6 марки СП5-2 и СП5-16ВА. Переключатель режимов индикации напряжения и тока типа П2К. Микросхема КР572ПВ2А представляет собой преобразователь на 3,5 десятичных разрядов, работающий по принципу последовательного счета с двойным интегрированием, с автоматической коррекцией нуля и определением полярности входного сигнала.

Для индикации использовались импортные светодиодные семисегментные индикаторы KINGBRIGT DA 56 – 11 SRWA с общим анодом. Конденсаторы С2 – С4 желательно применять пленочные типа К73-17. Вместо импортных семисегментных светодиодов можно применить отечественные с общим анодом типа АЛС324Б.

Цифровая панель индикации напряжения и тока


Рис. 5

Цифровая панель индикации напряжения и тока. После включения питания и безошибочном монтаже, при исправных деталях должны засветиться сегменты индикации HG 1- HG 3. По вольтметру резистором R 2 на ножке 36 микросхемы КР572ПВ2 выставляется напряжение 1 вольт. К ножкам (а) и ( b ) подключают блок питания. На выходе блока питания устанавливают напряжение 5 … 15 вольт и подбирают резистор R 10 (грубо), заменив его, на время, переменным. С помощью резистора R8 устанавливают более точное показание напряжения. После чего, к выходу блока питания подсоединяют переменный резистор мощностью 10 … 30 ватт, по амперметру выставляют ток равным 1А и резистором R 6 выставляют значение на индикаторе. Показание должно быть 1,00. При токе 500 мА – 0,50, при токе 50мА – 0,05. Таким образом, индикатор может индицировать ток от 10мА, т.е. 0,01. Максимальное значение индикации тока 9,99А.

Для большей разрядности индикации можно применить схему на КР572ПВ6. Размер печатной платы цифровой панели 80 х 50 мм ., рис.6 и рис.7. Контактные площадки U и I на печатной плате цифровой панели, с помощью гибких проводников подключаются к точкам соответствующих индикаторов HG 2 и HG 1. Микросхему КР572ПВ2А можно заменить на импортную микросхему ICL7107CPL.

5-107-6.jpg


Рис. 6

5-107-7.jpg


Рис. 7

Литература:

• Стабилизированный выпрямитель тока типа ТЭС 12 – 3 – НТ. г Горце Делчев. Болгария. 1984г.
• А.Патрин Лабораторный блок питания 0…30 В. РАДИО №10 2004г., стр.31.
• Импульсный блок питания на базе ПК. С.Митюрев. РАДИО №10 2004г. стр.33.
• Ануфриев А. Сетевой блок пита­ ния для домашней лаборатории. — Радио, 1992, N 5, С.39-40.
• Стабилизатор напряжения с двойной защитой Ю. КУРБАКОВ , РАДИО февраль 2004г. стр.39.
• Бирюков С. Портативный цифровой мультиметр. - В помощь радиолюбителю, вып. 100 - ДОСААФ, 1988. с. 71-90.
• Бирюков С. Цифровые устройства на МОП интегральных микросхемах. - М.: Радио и связь, 1990:1996 (второе издание).
• Радио N 8 1998г. с.61-65
• Digital Voltmeter

Всем давно известно, что без нормального регулируемого блока питания не возможно запустить ни один девайс сделанный своими руками. Ведь блок питания это основа радиолюбительской лаборатории, поэтому в этой статье я расскажу, как сделать простой регулируемый блок питания из доступных деталей всего на двух транзисторах. На этом рисунке изображена простая для изготовления схема регулируемого блока питания.

Схема регулируемого блока питания на транзисторах

Схема регулируемого блока питания на транзисторах

Эта схема очень неприхотлива в радиодеталях по этому, собрать её может каждый начинающий радиолюбитель практически из того, что имеется под рукой. Диодный мост Br1 пойдет практически любой с силой тока не менее 3А. Если нет диодного моста, замените его подходящими диодами. Конденсатор С1 можно заменить любым от 1000 мкФ до 10 000 мкФ. Переменный резистор Р1 от 5 до 10 кОм. Транзистор Т1 КТ815, BD137, BD139 транзистор Т2 КТ805, КТ819, TIP41, MJE13009 и многие другие советские и импортные аналоги, подбираются согласно требуемой нагрузке и мощности источника питания.

Диод D1 с силой тока не менее 3А, можно вообще заменить перемычкой, он защищает конденсатор C2 от переполюсовки при подключении к блоку питания аккумулятора. Источником питания для этой схемы может служить любой трансформатор от 12 до 30 вольт. Для своего блока питания я использовал тороидальный трансформатор от музыкального центра с двумя последовательно соединенными обмотками по 13,5В и силой тока 3,5А. После выпрямления напряжения на выходе получилось 30 вольт.


Все детали блока питания я, как всегда разместил на печатной плате размером 6,5 на 4,5 см. При установке транзисторов обратите внимание на цоколевку. Например у транзистора КТ819 ножки располагаются так ECB, а у транзистора MJE13009 так BCE, по этому транзисторы лучше всего соединить с платой небольшими кусочками провода и тогда у вас не возникнет проблем с правильной установкой транзисторов на радиаторе.

Печатная плата регулируемого блока питания 0-30В

Печатная плата регулируемого блока питания 0-30В

Два транзистора установите на одном радиаторе без изоляционных прокладок потому, что коллекторы транзисторов на схеме соединяются вместе. Не забудьте места крепления транзисторов смазать термопастой. Диодную сборку желательно закрепить на небольшом радиаторе, она тоже не слабо нагревается. Для контроля выходных характеристик желательно установить универсальный китайский измерительный прибор (УКИП) обозначенный на схеме V/A1.

Регулируемый блок питания 0-30В

Все компоненты блока питания я разместил в стандартном корпусе от компьютерного блока питания. Только из за большого размера тороидального трансформатора от музыкального центра вентилятор пришлось разместить снаружи, но это на технические характеристики блока питания особо не влияет.

Регулируемый блок питания 0-30В

Благодаря мощному 3,5 амперному тороидальному трансформатору этот универсальный регулируемый блок питания я использую для питания различных самоделок и в качестве зарядного устройства для небольших аккумуляторов.

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том как работает регулируемый блок питания.

Универсальный блок питания своими руками

Как сделать простой металлоискатель своими руками

Нагреватель из микроволновки

Генератор высокого напряжения из строчника на транзисторе

Генератор высокого напряжения из строчника на транзисторе

Зарядное устройство из импульсного блока питания

Зарядное устройство из импульсного блока питания

Защита от кз для блока питания

Защита от КЗ для блока питания своими руками

231 comments on “ Простой регулируемый блок питания 0-30в ”

Здравствуйте, собираюсь сделать по вашей схеме, только хотелось бы установить регулятор тока, не могли бы скинуть схему с этими же элементами но со встроенным регулятором тока, или может регулятор отдельно собрать, и куда подсоединить в этой схеме? Заранее благодарю

Сергей Здравствуйте.
Можно ли использовать компьютерный блок питания вместо
тороидальный трансформатор ?
С уважением Георги

Добрый вечер, Георги! Вы хотите подключить схему к компьютерному блоку питания? Да, все будет отлично работать. Только напряжение будет регулироваться от 0 до 12В. Схема не увеличивает, а уменьшает напряжение.

Добрый вечер, Сергей
Спасибо за отзыв!
Будьте здоров и желаю вам успехов
С уважением Георги
73! LZ1GBY

отличная схема. Спасибо! Собрал — завелась с полпинка. При нагрузке 1 А и напряжении 5 вольт греется радиатор, но терпимо. Поставил вентилятор от БП компа. Навалил нагрузку до 3 А — полет норм, температура радиатора поднялась до 45 градусов и встала. Транзюки правда чуть другие поставил, но суть та же . Я поставил КТ817 и TIP31C, сопротивление не 5.1, а 4,7 — короче то что под рукой было — и был удивлен — работает! Короче автору респект — красавчик.

кстати на куллер вывел кренку на 12 вольт, сразу после кондера на диодном мосте

Все правильно, так держать вентилятор через кренку на 12В. Молодец! 🙂

Спасибо за отзыв! Удачи Вам и хорошего дня! 🙂

От чего у вас питается кулер? В схеме его нет. Или это просто декорация? Спасибо.

Кулер запитан от дополнительной обмотки трансформатора.

Собрал схему. Всё работает. Вот только транзистор КТ 805 АМ, в пластмассовом корпусе, сильно нагревается уже при 12в. Стоит на небольшом игольчатом радиаторе: 70х40х20мм. Не подскажете какой нужен радиатор для хорошего самочувствия транзистора? Спасибо.

Добрый вечер! Радиатор желательно ставить от компьютерного процессора вместе с вентилятором.

Ещё 1 вопрос. На какой ток рассчитан этот блок питания? В видеоролике показано 1.84 А. Спасибо.

Мощность блока зависит от транзистора Т2. Например с транзистором MJE13009 максимальная нагрузка при напряжении 12В будет до 10А, а вот при напряжении 30В всего 1.5А.

Подскажите пожалуйста какой мощности резисторы в этой схеме. Спасибо.

Добрый вечер! Все резисторы мощностью 0.25Вт

Доброго времени суток, у вас много регулируемых блоков питания. Просьба сделать схему защиты от (КЗ) чтобы можно было её добавить на выходе блока питания. Собирал схему на TL431 и на LM317 всё работает, вот только при малейшем КЗ всё летит. Пытался собрать схемы защиты но они все минимум от 8 вольт а надо чтоб работали хотябы от 1 вольта или от ноля.

Добрый вечер! В том вся и проблема схем много но большинство работают только с постоянным напряжением и малым током. Для регулируемого напряжения много схем перепробовал ничего путевого не нашел.

Собрал сей дЭвайс), схема вполне рабочая. Поставил транзисторы чутка другие, докинул фильтры до трансформатора и на выход блока. Прикрутил модуль заряда телефонов (готовый покупал). Хотя на нём было заявлено от 30 вольт подачи но сильно грелась микруха, решил на кренке понизить напрягу до 10 в. Так как максималка у меня 23,4 Вольта. Туда же впиндюрил куллер. И вот как бы не плохой аппарат получился. Трансформатор использовал от безперебойника Тороидалтный. Одновременно заряжает два планшета данный блок и питает 15 ватный усилитель. Думаю докинуть на него ещё вольт, ампер метр и подшаманить развязку на кренке, что бы кулер регулировался от нагрева транзисторов. И будет вообще норм!
В общем советую собрать, пригодится в хозяйстве. )

Было бы не плохо прикрутить к этой схеме дополнение в виде возможности регулирования тока. Если есть у кого схемка дайте ссылку….

Блок питания необходимая вещь для каждого радиолюбителя, потому, что для питания электронных самоделок нужен регулируемый источник питания со стабилизированным выходным напряжением от 1.2 до 30 вольт и силой тока до 10А, а также встроенной защитой от короткого замыкания. Схема изображенная на этом рисунке построена из минимального количества доступных и недорогих деталей.

Схема регулируемого блока питания на стабилизаторе LM317 с защитой от КЗ

Схема регулируемого блока питания на стабилизаторе LM317 с защитой от КЗ

Микросхема LM317 является регулируемым стабилизатором напряжения со встроенной защитой от короткого замыкания. Стабилизатор напряжения LM317 рассчитан на ток не более 1.5А, поэтому в схему добавлен мощный транзистор MJE13009 способный пропускать через себя реально большой ток до 10А, если верить даташиту максимум 12А. При вращении ручки переменного резистора Р1 на 5К изменяется напряжения на выходе блока питания.

Так же имеется два шунтирующих резистора R1 и R2 сопротивлением 200 Ом, через них микросхема определяет напряжение на выходе и сравнивает с напряжением на входе. Резистор R3 на 10К разряжает конденсатор С1 после отключения блока питания. Схема питается напряжением от 12 до 35 вольт. Сила тока будет зависеть от мощности трансформатора или импульсного источника питания.

А эту схему я нарисовал по просьбе начинающих радиолюбителей, которые собирают схемы навесным монтажом.

Схема регулируемого блока питания с защитой от КЗ на стабилизаторе LM317

Схема регулируемого блока питания с защитой от КЗ на LM317

Сборку желательно выполнять на печатной плате, так будет красиво и аккуратно.

Печатная плата регулируемого блока питания на регуляторе напряжения LM317 своими руками

Печатная плата регулируемого блока питания на регуляторе напряжения LM317

Печатная плата сделана под импортные транзисторы, поэтому если надо поставить советский, транзистор придется развернуть и соединить проводами. Транзистор MJE13009 можно заменить на MJE13007 из советских КТ805, КТ808, КТ819 и другие транзисторы структуры n-p-n, все зависит от тока, который вам нужен. Силовые дорожки печатной платы желательно усилить припоем или тонкой медной проволокой. Стабилизатор напряжения LM317 и транзистор надо установить на радиатор с достаточной для охлаждения площадью, хороший вариант это, конечно радиатор от компьютерного процессора.

Желательно прикрутить туда и диодный мост. Не забудьте изолировать LM317 от радиатора пластиковой шайбой и тепло проводящей прокладкой, иначе произойдет большой бум. Диодный мост можно ставить практически любой на ток не менее 10А. Лично я поставил GBJ2510 на 25А с двойным запасом по мощности, будет в два раза холоднее и надёжнее.

А теперь самое интересное… Испытания блока питания на прочность.

Регулятор напряжения я подключил к источнику питания с напряжением 32 вольта и выходным током 10А. Без нагрузки падение напряжения на выходе регулятора всего 3В. Потом подключил две последовательно соединенные галогеновые лампы H4 55 Вт 12В, нити ламп соединил вместе для создания максимальной нагрузки в итоге получилось 220 Вт. Напряжение просело на 7В, номинальное напряжение источника питания было 32В. Сила тока потребляемая четырьмя нитями галогеновых ламп составила 9А.

Регулируемый стабилизатор напряжения на LM317 для блока питания своими руками

Радиатор начал быстро нагреваться, через 5 минут температура поднялась до 65С°. Поэтому при снятии больших нагрузок рекомендую поставить вентилятор. Подключить его можно по этой схеме. Диодный мост и конденсатор можно не ставить, а подключить стабилизатор напряжения L7812CV напрямую к конденсатору С1 регулируемого блока питания.

Схема подключения вентилятора к блоку питания

Схема подключения вентилятора к блоку питания

Что будет с блоком питания при коротком замыкании?

При коротком замыкании напряжение на выходе регулятора снижается до 1 вольта, а сила тока равна силе тока источника питания в моем случае 10А. В таком состоянии при хорошем охлаждении блок может находится длительное время, после устранения короткого замыкания напряжение автоматически восстанавливается до заданного переменным резистором Р1 предела. Во время 10 минутных испытаний в режиме короткого замыкания ни одна деталь блока питания не пострадала.

Радиодетали для сборки регулируемого блока питания на LM317

  • Стабилизатор напряжения LM317
  • Диодный мост GBJ2501, 2502, 2504, 2506, 2508, 2510 и другие аналогичные рассчитанные на ток не менее 10А
  • Конденсатор С1 4700mf 50V
  • Резисторы R1, R2 200 Ом, R3 10K все резисторы мощностью 0.25 Вт
  • Переменный резистор Р1 5К
  • Транзистор MJE13007, MJE13009, КТ805, КТ808, КТ819 и другие структуры n-p-n

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как сделать регулируемый блок питания своими руками

Читайте также: