Lego mindstorms nxt spider инструкция

Обновлено: 23.04.2024


Building Instructions
















Important: The holes in the gears must be aligned exactly as shown in the two pictures below, and the long gray pegs placed as shown.














Use one of the longest (50 cm) wires to connect the motor to port A on the NXT.


Use the Spider program for the Spider. This program allows you to make the motor go forward, backward, or stop, using the Right Arrow, Left Arrow, and Enter buttons on the NXT, which will control how the spider walks.

Copyright � 2007-2009 by Dave Parker. All rights reserved.
All project designs, images, and programs are protected by copyright. Please see the usage policy.


Всё на русском языке о роботах LEGO MINDSTORMS EV3 и NXT: различные инструкции к конструкторам разных версий, информация о версиях, скриншоты готовых моделей, фото и видео занятий по робототехнике. Также мы выкладываем пошаговые инструкции по созданию и программированию разных видов роботов лего из конструктора версии 8547. У нас можно скачать поурочное планирование факультатива робототехники для учеников 6-8 классов. Планируем добавить всю необходимую для роботехника-любителя информацию. Всё будет доступно всегда и бесплатно!

Серийный экзоскелет. для фермеров

Серийный экзоскелет. для фермеров

Мы привыкли представлять экзоскелеты как нечто из далекого будущего, в лучшем случае - из близкого, но только для военных. Однако профессор токийского Университета сельск.

Танцы корейских роботов

Танцы корейских роботов

Вот несколько фотографий с танцевального фестиваля роботов, который был проведен на New Tech Korea 2005. Один из роботов копировал движения Майкла Джексона.

Рубрика: Инструкции к роботу LEGO MINDSTORMS NXT 2.0

робототехника для начинающих

Внимание! Юные робототехники! Для Вас мы подготовили страницу с простыми и понятными инструкциями к нашему любому конструктору NXT!

Скачивайте и собирайте модели роботов из конструктора версии 8547 (robot lego mindstorms nxt 2.0).

Внешний вид коробки и руководство пользователя к конструкторам LEGO Mindstorm NXT версий 8527, 8547 и 9797 (выпускались до 2013 года):

Пошаговые инструкции для сборки разных моделей лего роботов (для конструктора версии mindstorm 8547)

Инструкция по сборке
робота АЛЬФАРЕКСа (артикул набора 8547)


Время сборки 4 часа (2 человека в группе).
Рекомендуемый возраст для занятия робототехникой детям - 12-14 лет
Робот крокодил


Робот - крокодил (робогатор)
Робот пятиминутка
робот пятиминутка
Бот-внедорожник
робот внедорожник из лего
Трёхколёсный бот
3-[ колёссный робот лего
Конструируем робота "Пятиминутку" за 5 минут ;-) Собираем и программируем Бот-внедорожник. Это уже более серьёзная модель, использующая датчик касания. Создаём и тестируем Трёхколёсного бота. У этого робота ещё нет датчиков, но уже можно писать средние по сложности программы для управления двумя серводвигателями.
Линейный ползун
робот - линейный ползун
Исследователь
робот - исследователь
Нападающий коготь
робот - нападающий коготь
Добавляем к "роботу пятиминутке" датчик цвета и получаем из него настоящего "Линейного ползуна" и получаем робот с ИИ начального уровня! Всем хорош "Бот-внедорожник": манёвренный, бронированный, умный. Ему бы ещё ультра-зрение бы добавить. Добавляем! Встречайте: Исследователь - вот вам бот с искусственным интеллектом среднего уровня! Хищный атакующий робот, содержащий коготь, которым он может ударить в цель. Собираем, тестируем!
МАНТИ - застенчивый богомол
робот - богомол
Шарикопульт
робот - шарикопульт
Робот-база с тремя двигателями
бот с тремя двигателями
Удивительное существо: робот-богомол. Постройте, загрузите базовую программу, порадутесь и погрустите вместе с МАНТИ! Интересный миниробот под названием "Шарикопульт" очень простой, но может быть использован как дополнение к любому другому роботу. Базовый робот с тремя двигателями может пригодиться для получения навыков строительства собственных блоков. Так как в базовом роботе нет ни датчиков, ни спец.механизмов. Вы все это можете сделать сами!
Двух кнопочный пульт ДУ
пульт дистанционного управления из лего
Продвинутый Молот-автобот
молот - автобот
Простой светомер из лего
светометр из лего
В данном уроке можно научиться собирать двух кнопочный пульт дистанционного управления любым роботом, собранным из конструктора лего миндстормз! Новенький проект "Молот-автобот"- это сложный в сборке и программировании робот. Но итоговая модель автомобиля-робота с молотом позволяет использовать 3 двигателя и 2 датчика! Эксперименты с данным светомером позволят научиться использовать датчик света в своих роботах.
Робот СЕГВЭЙ с наездником
робот - сегвэй
Измеряем растояние длиномером
длиномер
автобот: гоночная машина из лего
гоночная машина из лего
Даже робота СЕГВЭЙ (SEGWAY) можно построить из набора 8547. Инструкция доступна при клике на картинку. Простейшее дополнение к роботу позволяет измерять пройденное им растояние. В статье описано как создать очень удобного робота-длиномера из робота пятиминутки. Замечательная разработка! Автомобиль, да ещё какой! Есть возможность и удалённого управления, и "мозги", позволяющие принимать решения, считывая цветные линии на полу! Можно скачать - это АВТОБОТ!
Пятикнопочный пульт ДУ
пульт дистанционного управления
Супер пульт ДУ
пульт ДУ
Миниавто с 3-х пультом ДУ
миниавто
Пульт ДУ можно использовать практически в любом своём проекте. Единственное требование - наличие двух конструкторов lego mindstorms nxt 2.0 Супер пульт ДУ то уже мега-навороченный вариант для управления гоночным автомобилием или любым другим роботом MINDSTORMS NXT! Забавная игрушка - миниавтомобильчик с трёх кнопочным пультом дистанционного управления

Комплект из 9-и инструкций по лего роботам (robot lego mindstorms nxt 8547) под общим названием:


Мультибот . Кликните на картинку или просмотрите конструкции, приведённые ниже:


Транспортное средство
Этот транспорт является базовым для последующих робототехнических машин. Научитесь быстро собирать его прежде чем начнёте собирать более сложные механизмы.


Гусеничное транспортное средство
Собирается после того как вы собрали транспортное средство. Робот подходит для соревнований на силовое перетягивание каната.


Гольфкар с лункой
Собирается на базе гусеничного транспортного средства путём небольшой модернизации.


  • Лама - забавное животное (бонусная модель для конструктора 8547)
  • Трансформер-морф - сложная модель робота!
  • "Кучерявый танк" - забавный гусеничный танкообразный робот
  • Стреляющая рыба - робот, подобный рыбе, которая выстреливает струйкой воды, чтобы оглушить противника
  • Супер сортировщик - мегапуперсупер навороченный сортировщик шариков

    Растение, которое нападает на человека (в комплекте инструкция и программа)

Андрей Степанов

Строим из LEGO Mindstorms и Technic

1. Шутербот
Первый робот, с которого стоит начать знакомство с Mindstorms NXT — реагирует на движение, он может охранить комнату и в случае движения начать стрелять шариками
2. Робогатор
Робот-крокодил, который прыгает на все что встречается на его пути.
3. Робот-сортировщик
Робот, который умеет различать цвета и сортировать шарики
4. АльфаРекс
Робот-гуманоид, он умеет ходить, танцевать, говорить, избегать препятствия и захватывать цветные объекты.
5. Богомол Manty
Возьмите Ваш NXT 2.0 набор и переверните его, чтобы вы могли увидеть обратную сторону. Слева вы найдете два очень маленьких роботов, один из которых - МАНТИ! Это одна из бонусных официальных MINDSTORMS моделей NXT 2.0. МАНТИ - застенчивый робот-животное, которое ходит и радуется жизни, пока не увидит кулак (а Вы ему покажите). Когда это бедное существо всё-таки увидит кулак, то он сразу опускает голову и отворачивается. Затем снова начинает весело ходить в новом направлении.
6. Сегвей
Этот робот имитирует всем известный Segway PT, который является двухколесным самобалансирующимся транспортным средством, на котором находится наездник(водитель). Балансрует он с помощью датчика цвета из набора NXT 2.0 версии конструктора 8547. При этом датчик используется в простом режиме, определяя близость к земле. Обнаруживая приблизительный угол наклона, робот балансирует своё положения (постоянно подруливает двигателями)! Для забавы, если у Вас есть второй блок NXT, Вы можете настроить удалённое управление по каналу Bluetooth этим Segway-роботом. Это позволит Вам управлять уровнем наклона всадника вперед и назад с помощью блока NXT в качестве Bluetooth-пульт дистанционного управления. Естественно, при этом робот начнет подруливать вперед или назад для создания баланса, так же, как реальный Segway! Многие самобалансирующейся роботы (в том числе настоящее транспортное средство Segway PT) используют специальные гироскопические или другие сложные и дорогие датчики для обнаружения угол наклона робота. А этот робот использует только датчик цвета (в режиме датчика света), направляя датчик на землю и измеряет отраженный свет, который незначительно меняется в зависимости от того, насколько близко датчик находится от земли.
7. Автобот
Этот автобот выглядит и управляется как настоящий автомобиль! Констуктивно он разработан так, что передние колёса имеют поворотную платформу и поворачиваются с помощью двигателя. В конструкции также есть "хитрые" шестерёнки, увеличивающие скорость вращения задних ведущих колёс. Датчик цвета находится под машиной так, чтобы автомобиль мог делать простые автономные операции, считывая цвет поверхности. Датчик может распознать шесть различных цветов, так что вы можете сделать автомобиль, который будет реагировать на различные цветные линии, цветные полосы бумаги и т. д. Вы также можете управлять автомобилем с помощью дистанционного управления: с простого двухкнопочного проводного пульта дистанционного управления (требуется только один NXT комплект), беспроводным Bluetooth-пультом дистанционного управления от другого NXT или с компьютера, подключив игровой руль или джойстик.
8. Гитара
Вдарим рок в этой дыре! Электрогитара из NXT 2.0 вполне себе детского размера, на которой вполне можно сыграть несложную мелодию
9. Исследователь
Миссия этого робота состоит в исследовании всего вокруг. Неважно где он находится: в Вашей комнате, дома, или где то на улице. Робот «видит» стены и другие препятствия, старается не соприкосать с ними. Подъезжая близко к препятствию робот поворачивает голову сначала налево, потом направо. Определяет, в каком направлении лучше всего ехать, поворачивается и едет. В случае, если он всё-таки случайно столкнётся с чем-то пердним бампером, то датчик нажатия сработает и робот остановится, подумает в какую сторону повернуть. И лишь потом поедет в верном направлении.

Строим из LEGO Mindstorms и Technic

Строим из LEGO Mindstorms и Technic

20. Проект "Робот, следующий по линии"
Всероссийский конкурс исследовательских работ учащихся "ЮНОСТЬ, НАУКА, КУЛЬТУРА" Направление: математика и информационные технологии. Тема: "Практическая информатика на примере робота, следующего по линии"
21. Робот NXTAPOD
Шесть ног на одном моторе! Это одна из самых простых, и вместе с тем, интересных моделей шагающих роботов. Придумал эту модель Даниэль Бенедеттелли (Daniele Benedettelli) ещё в 2009 году. В модели использован всего один мотор, однако это не помешало Даниэлю сделать очень простой, но хитрый механизм, благодаря которому при движении вперёд робот движется прямо, а при движении назад - разворачивается. Подробнее о роботе на сайте lego56.ru
22. Робот - игровой автомат
Игровой автомат с возможностью играть вдвоем. Классические игры: Asteroids from Atari (1978), Lunar Lander from Atari (1979), Pong from Atari (1975), HeadOn from Sega and Gremlin (1979), Arkanoid from Taito (1986)
23. Робот Черепаха
Крайне интересный робот. Алгоритм с машиной состояний, любопытная конструкция.
24a. Подготовка к фестивалю робототехники 2013. Карандаш и Самоделкин
Подготовка к соревнованиям в секции сумо роботов. Описание алгоритма работы робота, поиск и тестирование различных конструктивных решений
24b. Фестиваль робототехники 2013. Самарская область
Областной фестиваль робототехники, команда "Карандаш и Самоделкин" участвует в секциях "Батик" и "Сумо"
25a. РОБОМИР 2013. Подготовка
Серьезные соревнования = серьезные требования. Робота нужно собрать и протестировать за час не пользуясь подсказками. "Карандаш и Самоделкин" тренируются в сборке и отлаживают робота для участия в соревнованиях "Батик".
25b. РОБОМИР 2013. Карандаш и Самоделкин в Москве
Команда юных роботехников "Карандаш и Самоделкин" в составе сборной от области отправляется в Москву на фестиваль РОБОМИР.
26. Робот-змея R3PTAR из NXT 2.0
Тот, кто смотрел рекламные ролики LEGO Mindstorms EV3, наверняка помнят робота R3PTAR - змею, которую можно создать из коробочной версии конструктора. Так вот энтузиасты решили не ждать появления конструктора в продаже и собрали данную модель из того, что было под рукой, а именно из LEGO Mindstorms NXT 2.0. Автор программы A. Kolotov.
27. Барабанная установка
Эта отличная барабанная установка собирается всего из одного NXT 2.0 набора. Установка состоит из тарелки, барабана и бас-барабана, которые издают похожие звуки при ударе по ним. Это довольно здорово, но что делает эту работу еще лучше - так это встроенная игра-тренажер. Робот отыгрывает ритм и барабанщику надо этот ритм повторять какое-то время. Чем ближе ты к завершению упражнения, тем выше поднимается флажок.
28. Скачки
Веселая игра на двух игроков. Всадник того игрока, который чаще нажимает кнопку, первым приходит к финишу. Но стоит замешкаться и его отбрасывает назад. Кроме деталей NXT-набора Вам потребуются гусеницы и лего фигурки всадников.
29. Робот Трипод
Трипод - очень любопытная модель. Каждая нога управляется отдельным процессом, с использованием ПИД-регулирования. Требует настройки под развесовку после сборки, даже то как будут проложены провода будет влиять на настройку равновесия в коде. Инструкция и программа доступны по ссылке Обратите внимание на настройки компилятора на странице автора, иначе робот не оживет.

Строим из LEGO Mindstorms и Technic

Андрей Степанов

Здравствуйте. В своих статьях я хочу Вас познакомить с основами программирования микрокомпьютера LEGO NXT Mindstorms 2.0. Для разработки приложений я буду использовать платформы Microsoft Robotics Developer Studio 4 (MRDS 4) и National Instruments LabVIEW (NI LabVIEW). Будут рассматриваться и реализовываться задачи автоматического и автоматизированного управления мобильными роботами. Двигаться мы будем от простого к сложному.


Предвосхищая некоторые вопросы и комментарии читателей.

Почему именно NXT Mindstorms 2.0? Потому-что для своих проектов данный набор мне показался наиболее подходящим, т.к. микрокомпьютер NXT полностью совместим с платформами MRDS 4 и NI LabVIEW, а так же данный набор является очень гибким в плане сборки различных конфигураций роботов — затрачивается минимум времени на сборку робота.

Почему платформы MRDS 4 и NI LabVIEW? Так сложилось исторически. Обучаясь на старших курсах университета стояла задача в разработке учебных курсов с использованием данных платформ. К тому же платформы обладают достаточной простотой в освоении и функциональностью, с их использованием можно написать программу непосредственно для управления роботом, разработать интерфейс пользователя и провести тестирование в виртуальной среде (в случае с MRDS 4).

Да кому вообще нужны эти ваши уроки, в сети и так куча проектов по робототехнике! С использованием данной связки (NXT+MRDS 4/NI LabVIEW) учебных статей практически нет, в основном используется родная среда программирования, а в ней совсем все тривиально. Всем кому интересны робототехника, программирование и у кого есть набор NXT (а таких не мало), возрастная аудитория любая.

Графические языки программирования это зло, а те кто на них программируют еретики! Графические языки программирования коими и являются MRDS 4 и NI LabVIEW несомненно имеют свои минусы, например ориентированность под узкие задачи, но все же в функциональности они мало уступают текстовым языкам, тем более NI LabVIEW изначально разрабатывался как язык легкий в освоении для решения научных и инженерных задач, для этого в нем присутствует множество необходимых библиотек и инструментов. По-этому для решения наших задач данные графические языки являются наиболее подходящими. И не надо нас за это сжигать на костре презирать.

Все это выглядит по-детски и вообще не серьезно! Когда задача состоит в реализации алгоритмов, в обучении основам и принципам программирования, робототехники, систем реального времени без углубления в схемотехнику и протоколы, то это очень подходящий инструмент хоть и не дешевый (касаемо набора NXT). Хотя для этих же целей неплохо подойдут наборы на базе Arduino, но совместимости с MRDS 4 и NI LabVIEW у данного контроллера почти нет, а в данных платформах есть свои прелести.

Технологии, которые используются, являются продуктом загнивающих капиталистических стран, а автор враг народа и пособник западных заговорщиков! К сожалению, большинство технологий в области электроники и вычислительной техники родом с запада, буду очень рад если мне укажут на аналогичные технологии исконно отечественного производства. А пока будем использовать то, что имеем. И не надо на меня за это сообщать спецслужбам держать зла.

Краткий обзор платформ MRDS 4 и NI LabVIEW.

Внесу некоторую ясность в терминологию. Под платформой, в данном случае, имеется ввиду совокупность различных инструментов, например язык VPL в MRDS, а так же среда выполнения приложений, т.е. непосредственной компиляции приложений в исполняемые (*.exe) файлы нету.

  • блочной диаграммы, описывающей логику работы виртуального прибора;
  • лицевой панели, описывающей интерфейс пользователя виртуального прибора.

Краткий обзор набора LEGO NXT Mindstorms 2.0.


Рисунок 1 — Микрокомпьютер NXT с подключенными датчиками и приводами

И конечно же в наборе находятся разнообразные детали LEGO в форм-факторе LEGO Technic из которых будут собраны исполнительные механизмы и несущая конструкция.


Рисунок 2 — Детали в форм-факторе LEGO Technic

Пишем первое приложение.

Напишем первое приложение. Пусть, классически, данное приложение выводит текст “Hello, World!”. Реализация будет происходить поочередно в MRDS 4 и NI LabVIEW, в процессе будем рассматривать специфику каждой платформы.

Предварительно инсталлируем платформы MRDS 4 и NI LabVIEW, в случае с MRDS 4 инсталляция должна проводится в папку путь к которой не состоит из кириллицы (русских букв), учетная запись пользователя так-же должна состоять только из латинских букв.

1. Платформа MRDS 4.

Запускаем среду VPL (Меню Пуск — Все Программы — Microsoft Robotics Developer Studio 4 — Visual Programming Language). Данная среда позволяет разрабатывать приложения на языке VPL, проводить тестирование в виртуальной среде VSE. Программа в VPL представляет собой диаграмму, состоящую из соединенных между собой блоков. В открывшемся окне, помимо стандартной панели команд и меню, присутствует 5 основных окон:

  1. Basic Activities – содержит базовые блоки, которые реализуют такие операторы как константа, переменная, условие и т.д.;
  2. Services – содержит блоки, предоставляющие доступ к функционалу платформы MRDS, например блоки для взаимодействия с какой-либо аппаратной составляющей робота, или блоки для вызова диалогового окна;
  3. Project – объединяет диаграммы входящие в проект, а так же различные конфигурационные файлы;
  4. Properties – содержит свойства выделенного блока;
  5. Diagrams window – содержит, непосредственно, диаграмму (исходный код) приложения.


Рисунок 3 — Среда программирования VPL

Выполним следующую последовательность действий:

  1. добавим блоки Data (из окна Basic Activities) и блок сервиса Simple Dialog (из окна Services),
  2. в блок Data введем “Hello, World!” (без кавычек) и выберем тип данных String,
  3. соединим блок Data с блоком Simple Dialog, появиться диалоговое окно,
  4. далее, все выполняем как на рисунках


Рисунок 4 — Окно Connections


Рисунок 5 — Окно Data Connections


Рисунок 6 — Законченный вид диаграммы


2. Платформа NI LabVIEW.

На данной платформе все реализуется, практически, идентично. Запустим среду LabVIEW. Перед нами появиться два окна, первое — Front Panel, предназначено для реализации интерфейса пользователя (внешнего вида виртуального прибора), второе — Block Diagram, для реализации логики программы.


Рисунок 8 — Окна среды LabVIEW

Мы будем использовать окно Block Diagram. Выполним следующие шаги:

  1. в окне Block Diagram вызовем контекстное меню, нажатием правой кнопкой мыши,
  2. в появившемся окне перейдем по вкладкам, как на рисунке и выберем String Constant,



Лет эдак в 10-11, после долгих и беззаботных лет игры с контрукторами Lego, я узнал о существовании великолепного набора Mindstorms, который позволял создавать самых настоящих роботов без специализованных знаний электроники, электротехники и даже программирования. Я сразу же заинтересовался данной серией, но тогда моим мечтам обладать Mindstorms по различным (в основном — финансовым) причинам не суждено было сбыться.
Сейчас мне 20 и в честь юбилея друзья (спасибо им!) решили окунуть меня назад в детство и таки дать возможность полепить собственных роботов. Правда, в этот раз всё будет серьёзнее, чем в моих детских мыслях — мы будем действительно программировать Mindstorms под Debian GNU/Linux.

Неплохо, да?
Собственно, данный робот и будет нашей основной тестовой моделью. Но мы попробуем немного усовершенствовать его навыки. И для этого мы напишем небольшой кусочек кода.


Действительно. Идущее в комплекте ПО работает только в Windows и Mac OS. А у нас, внезапно, Debian Squeeze. К счастью, Mindstorms обладает огромным сообществом фанатов, которые придумали решение данной проблемы — использование альтернативного ПО для программирования роботов, в частности Bricxcc (здесь выложен полнейший мануал по настройке всего и вся).
А теперь немного теории — в программировании Mindstorms, как правило, помимо визуального среды ROBOLAB для Windows и Mac OS используется язык RCX, однако среди фанатов одним из наиболее популярных языков является достаточно простой NXC (Not eXactly C). Простая программа на NXC выглядит примерно так:

  1. task music()
  2. int lastTone=5000;
  3. while ( true )
  4. int tone= Random (5000)+500;
  5. int duration= Random (500);
  6. PlayTone(tone,duration);
  7. Wait(duration);
  8. >
  9. >
  10. task main()
  11. start music;
  12. while ( true )
  13. /* Determine Next Action */
  14. unsigned int duration= Random (5000);
  15. unsigned int motorSpeed= Random (100);
  16. unsigned int syncMode= Random (3);
  17. /* Display Next Action */
  18. ClearScreen();
  19. NumOut(0,LCD_LINE1,duration);
  20. NumOut(0,LCD_LINE2,motorSpeed);
  21. NumOut(0,LCD_LINE3,syncMode);
  22. /* Perform Next Action */
  23. switch (syncMode)
  24. case 0:
  25. OnFwdReg(OUT_AC,motorSpeed,OUT_REGMODE_SYNC);
  26. break ;
  27. case 1:
  28. OnRevReg(OUT_AC,motorSpeed,OUT_REGMODE_SYNC);
  29. break ;
  30. case 2:
  31. OnFwdSync(OUT_AC,motorSpeed,-100);
  32. break ;
  33. case 3:
  34. OnRevSync(OUT_AC,motorSpeed,-100);
  35. break ;
  36. >
  37. Wait(duration);
  38. >
  39. >

Для справки — данная программа заставляет «танцевать» нашего робота под нечто, напоминающее музыку.

Не буду спорить, программа совсем не сложна для понимания, но достаточно громоздка. И её можно заметно упросить, используя вместо написания кода на NXC специальный конвертер PyNXC. Иначе говоря, мы будем писать код на Python'е, а PyNXC будет преобразовывать его в NXC-код и загружать на устройство, избавив нас от необходимости писать громоздкий код на подобии Си.


Ну, а теперь, собственно, напишем на Python'е программу для путешествия нашего робота среди прозрачных чашек, но используя более грамотный алгоритм разворота:

Теперь наш робот научился разворачиваться на месте и, как только мешающий объект пропадет с поля его зрения, продолжать движение вперед.

Как вы уже, наверное, заметили, программировать Mindstorms очень просто. Стоит также сказать, что помимо NXC и Python с использованием PyNXC, можно писать код на Java, Lua, Ruby, Ассемблере, а также, что логично, использовать ассемблерные вставки в других языках.
Благодаря всему этому Mindstorms из детской игрушки превращается в весьма мощную штуку, позволяющую создавать сложные и «умные» механизмы, как например вот эта гитара:

Читайте также: