Назовите свойства самолета существенные с точки зрения конструктора дизайнера экономиста летчика

Обновлено: 20.05.2024

Балансировка самолета (вертолета) - процесс уравновешивания сил и моментов, действующих на самолет (вертолет) в полете. На самолетах достигается отклонением органов управления: руля высоты (стабилизатора) и руля направления, элеронов (интерцепторов), рычагов управления двигателем, а также триммеров, расположенных на управляющих поверхностях.

На самолетах вертикального взлета и посадки балансировка осуществляется и на режиме висения-с помощью струйных (газодинамических) рулей.

На вертолете она обеспечивается изменением направления и силы тяги несущего (несущих) и рулевого винтов, а также отклонением стабилизатора, руля направления (где они имеются).

УСТОЙЧИВОСТЬ И УПРАВЛЯЕМОСТЬ САМОЛЕТА

Основные понятия и определения

При рассмотрении траекторных задач динамики полета обычно полагают, что все силы, действующие на самолет, приложены в его центре масс.

Рис.1.7.1. Схема сил, действующих на самолет как на материальную точку.

Это упрощает рассуждения и расчет основных параметров полета, но не позволяет определить все условия, которые необходимо обеспечить для выполнения заданного режима полета. Например, для горизонтального полета с заданной скоростью необходим определенный угол атаки. Какое для этого требуется отклонение руля высоты и хватит ли максимального отклонения руля для балансировки самолета на заданном угле атаки? Для ответа на этот вопрос необходимо рассмотреть моменты сил, действующих на самолет, и возникающее в результате их воздействия вращательное движение самолета. Для определения моментов необходимо знать, как известно из механики, величину каждой силы и точку ее приложения, а также оси координат, относительно которых определяются моменты сил.

Обычно моменты определяются относительно осей, проходящих через центр масс самолета. Это позволяет исключить из рассмотрения момент, создаваемый силой тяжести mg, приложенной в центре масс. Поэтому, в дальнейшем на схемах для определения моментов сила тяжести изображаться не будет, а центр масс будет показан как шарнир, относительно которого происходит вращение самолета.

Моменты, действующие на самолет, обычно рассматриваются в связанной системе координат oxyz, начало координат которой располагается в центре масс самолета, а оси координат направлены следующим образом:

  • продольная ось oxвдоль строительной оси фюзеляжа или хорды крыла к передней части самолета;
  • нормальная ось oyперпендикулярна продольной оси, лежит в плоскости симметрии самолета и направлена к верхней его части;
  • поперечная ось ozперпендикулярна плоскости симметрии самолета и направлена вдоль правого крыла.

Рис.1.7.2. Аэродинамические моменты, действующие на самолет
относительно осей связанной системы координат.

Составляющие моментов, действующих на самолет, в связанной системе координат имеют следующие названия:

  • относительно оси oxдействует момент крена , который считается положительным, если он стремится создать правый крен;
  • относительно оси oyдействует момент рысканья , который считается положительным, если он стремится развернуть самолет влево;
  • относительно оси ozдействует момент тангажа , который считается положительным, если он стремится увеличить угол атаки самолета. Положительный момент тангажа называют кабрирующим, а отрицательный – пикирующим.

Эти названия были принесены в авиацию сто лет назад в основном из французского языка. Так «тангаж» у французских моряков означает килевую качку корабля, «кабре» означает у кавалеристов «встать на дыбы». По этим терминам можно представить из кого формировались ряды первых авиаторов и с чем они сравнивали свои, видимо не очень послушные воле пилотов, аэропланы.

Величины аэродинамических моментов рассчитываются по формулам, аналогичным формулам для аэродинамических сил:

(1.7.1)
(1.7.2)
(1.7.3)

где:
, , – коэффициенты моментов крена, рысканья и тангажа соответственно;
S – площадь крыла;
– размах крыла;
– средняя аэродинамическая хорда крыла.

Как и коэффициенты подъемной силы и лобового сопротивления , величины , , зависят от геометрических характеристик самолета, его конфигурации и отклонения рулей, а также углов атаки и скольжения и критериев аэродинамического подобия. Кроме того, как видно из формул, величины аэродинамических моментов зависят от плотности воздуха, скорости полета, площади и характерного геометрического размера крыла. Необходимо отметить, что если для моментов крена и рысканья в качестве характерного геометрического размера выбирается размах крыла, то для момента тангажа используется средняя аэродинамическая хорда, определение которой будет дано в п.1.7.2.

Коэффициенты моментов в отличии от самих моментов являются величинами безразмерными и не зависят от плотности воздуха, скорости полета, площади и геометрических размеров крыла. Поэтому удобнее в расчетах использовать коэффициенты моментов, а величины моментов по ним всегда можно определить по формулам (1.7.1-1.7.3).

Причиной возникновения моментов крена и рысканья является несимметричное обтекание самолета, возникающее при полете со скольжением, либо при отклонении элеронов или руля направления. В этом случае возникает так называемое боковое движениесамолета. В случае симметричного обтекания на самолет действует только момент тангажа. Движение самолета в этом случае происходит в плоскости симметрии самолета и называется продольным. Основными параметрами продольного движения является скорость и угол атаки. Для управления самолетом по тангажу используется руль высоты(РВ).

В диапазоне летных углов атаки, когда сохраняется безотрывное обтекание крыла продольное и боковое движение самолета можно рассматривать независимо друг от друга. При больших углах атаки такой подход недопустим из-за их взаимного влияния. Например, при увеличении угла атаки до критического происходит обычно сваливание самолета на крыло, т.е. изменение параметра продольного движения – угла атаки приводит к возникновению бокового движения крена.

По этой причине, рассматривая отдельно продольное и боковое движение, необходимо помнить, что все эти рассуждения справедливы только в диапазоне летных углов атаки.

Движение самолета с учетом его вращения изучается в разделе динамики полета «Устойчивость и управляемость самолета». В этом разделе используются следующие основные понятия:

  1. Балансировка самолета –состояние равновесия всех действующих на самолет моментов в установившимся режиме полета, обеспечиваемое для каждой конфигурации самолета соответствующим отклонением рулей, которые называются балансировочными. Обычно по результатам летных испытаний и расчетов строятся балансировочные диаграммы, которые показывают зависимость балансировочного отклонения рулей от скорости или других параметров полета. По балансировочным диаграммам оценивается возможность балансировки самолета на заданных режимах полета.
  2. Управляемость –свойство самолета отвечать соответствующими линейными и угловыми перемещениями в пространстве на отклонение рычагов управления (штурвала и педалей). Под управляемостью понимается способность самолета изменять по воле пилота, т.е. в ответ на отклонение рулей, положение в пространстве и переходить с одного режима полета на другой, или, как часто говорят, «способность самолета ходить за ручкой управления». Для обеспечения управляемости необходим дополнительный к балансировочным углам запас отклонения рулей. Управляемость оценивается критериями управляемости, которые обычно определяют потребное отклонение рулей или рычагов управления для заданного изменения параметров полета.
  3. Устойчивость –свойство самолета восстанавливать без вмешательства пилота кинематические параметры невозмущенного движения и возвращаться к исходному режиму полета после прекращения действия возмущений.

В полете самолет находится под постоянным воздействием различных возмущений, связанных с перемещением воздушных масс в атмосфере. Эти возмущения стремятся вывести самолет из равновесия и изменить режим полета. В таких условиях благодаря устойчивости упрощается пилотирование самолета, т.к. самолет сохраняет заданный режим полета и парирует возникающие возмущения самостоятельно. Выдающийся русский аэродинамик Н.Е. Жуковский в одной из своих научных работ назвал это качество «прочностью движения». Пилоты, чтобы отметить высокую устойчивость самолета, говорят, что «самолет плотно сидит в воздухе».

Для количественной оценки устойчивости используются различные критерии устойчивости, которые определяют реакцию самолета или характер переходного процесса при воздействии на самолет внешнего возмущения.

Для упрощения рассуждений устойчивость самолета условно делят на динамическуюи статическую. Рассмотрим различие между статической и динамической устойчивостью на примере реакции самолета на воздействие вертикального восходящего порыва ветра, за счет которого происходит увеличение угла атаки. Т.к. рассматривается устойчивость самолета, то пилот не вмешивается в управление, и самолет должен «самостоятельно» вернуться к первоначальному углу атаки после прекращения действия порыва ветра. Очевидно, что для этого необходимо при увеличении угла атаки возникновение пикирующего момента, стремящегося уменьшить угол атаки. Такой момент называется стабилизирующим. Он всегда направлен на возврат самолета к первоначальному режиму полета. А способность самолета создавать стабилизирующие моменты и называется статической устойчивостью.

Однако возникновение стабилизирующего момента не всегда приведет к возврату самолета на первоначальный угол атаки. Например, при излишне большом значении стабилизирующего момента возможно возникновение незатухающих колебаний относительно исходного угла атаки. В этом случае говорят, что самолет, обладая статической устойчивостью, динамически неустойчив. Таким образом, статическая устойчивость является необходимым, но недостаточным условием динамической устойчивости, которую можно рассматривать как полную устойчивость в соответствии с приведенным выше определением.

Для статически неустойчивого самолета при увеличении угла атаки возникает дестабилизирующийкабрирующий момент, под действием которого происходит дальнейшее увеличение угла атаки, и возврат к первоначальному углу атаки без вмешательства пилота будет невозможен. Поэтому в этом случае можно сразу сделать вывод, что самолет не обладает статической, а, следовательно, и динамической устойчивостью.

Рис.1.7.3. К объяснению понятий статическая и динамическая устойчивость самолета.

В данном разделе будут рассмотрены продольная балансировка, а также продольная статическая устойчивость и продольная статическая управляемость самолета.

При слове «модель» у многих, наверное, появляется мысль о моделях самолётов, кораблей, танков и другой техники, которые стоят на полках магазинов. Однако слово «модель» имеет более широкое значение. Например, игрушки, в которые играют дети всех возрастов, — это модели реальных объектов, с которыми они сталкиваются в жизни (или столкнутся в будущем).

Говоря о модели, мы всегда указываем на какой-то другой объект (процесс, явление), например: «Глобус — это модель Земли». Здесь другой объект — это Земля, он называется оригиналом. Объект становится моделью только тогда, когда есть оригинал, модели без оригинала не существует.

Зачем вообще нужны модели? Они появляются тогда, когда мы хотим решить какую-то задачу, связанную с оригиналом, а изучать оригинал трудно или даже невозможно:

• оригинал не существует; например, учебники истории — это модели общества, которого уже нет; возможные последствия ядерной войны учёные изучали на моделях, потому что ставить реальный эксперимент было бы безумием;
• исследование оригинала дорого или опасно для жизни, например, при управлении ядерным реактором, испытании скафандра для космонавтов, создании нового самолёта или корабля;
• оригинал сложно или невозможно исследовать непосредственно, например Солнечную систему, молекулы и атомы, очень быстрые процессы в двигателях внутреннего сгорания, очень медленные движения материков;
• нас интересуют только некоторые свойства оригинала; например, чтобы испытать новую краску для самолёта, не нужно строить самолёт.

Итак, модель всегда связана не только с оригиналом, но и с конкретной задачей, которую мы хотим решить с помощью модели.

Для любого оригинала можно построить множество разных моделей. Например, моделью человека может служить его фотография, паспорт, генетический код, манекен, рентгеновский снимок, биография. Зачем столько? Дело в том, что каждая из этих моделей отражает только те свойства, которые важны при решении конкретной задачи. Такие свойства в теории моделирования называют существенными.

Вместе с тем одна и та же модель может описывать множество самых разных оригиналов. Например, в различных задачах атом, муха, человек, автомобиль, высотное здание, даже планета Земля могут быть представлены как материальные точки (если размеры соседних объектов и расстояния между ними значительно больше).


Модель — это объект, который обладает существенными свойствами другого объекта или процесса (оригинала) и используется вместо него.

Назовите свойства самолёта, существенные с точки зрения:

а) конструктора;
б) дизайнера;
в) экономиста;
г) лётчика;
д) бортпроводника;
е) пассажира.

Практически всё, что мы делаем с помощью компьютеров, — это моделирование. Например, база данных библиотеки — это модель реального хранилища книг, компьютерный чертёж — это модель детали и т.д.


Моделирование — это создание и исследование моделей для изучения оригиналов.

С помощью моделирования можно решать задачи четырёх типов:

• изучение оригинала (в научных и учебных целях);
• анализ («что будет, если . ») — прогнозирование влияния различных воздействий на оригинал;
• синтез («как сделать, чтобы . ») — управление оригиналом;
• оптимизация («как сделать лучше всего . ») — выбор наилучшего решения в данных условиях.

Назовите задачи, которые решаются в каждом случае.

а) Даниил считает, как купить новый планшетный компьютер по минимальной цене.
б) Кирилл выясняет, будет ли плавать в воде кусок пластика.
в) Константин проверяет, выдержит ли верёвка вес альпиниста.
г) Василий хочет сделать такой стол, который выдержит нагрузку в 200 кг.
д) Алёна изучает строение молекулы воды.


Следующая страница Какие бывают модели?


Cкачать материалы урока

При слове «модель» у многих, наверное, появляется мысль о моделях самолётов, кораблей, танков и другой техники, которые стоят на полках магазинов. Однако слово «модель» имеет более широкое значение. Например, игрушки, в которые играют дети всех возрастов, — это модели реальных объектов, с которыми они сталкиваются в жизни (или столкнутся в будущем).

Говоря о модели, мы всегда указываем на какой-то другой объект (процесс, явление), например: «Глобус — это модель Земли». Здесь другой объект — это Земля, он называется оригиналом. Объект становится моделью только тогда, когда есть оригинал, модели без оригинала не существует.

Зачем вообще нужны модели? Они появляются тогда, когда мы хотим решить какую-то задачу, связанную с оригиналом, а изучать оригинал трудно или даже невозможно:

• оригинал не существует; например, учебники истории — это модели общества, которого уже нет; возможные последствия ядерной войны учёные изучали на моделях, потому что ставить реальный эксперимент было бы безумием;
• исследование оригинала дорого или опасно для жизни, например, при управлении ядерным реактором, испытании скафандра для космонавтов, создании нового самолёта или корабля;
• оригинал сложно или невозможно исследовать непосредственно, например Солнечную систему, молекулы и атомы, очень быстрые процессы в двигателях внутреннего сгорания, очень медленные движения материков;
• нас интересуют только некоторые свойства оригинала; например, чтобы испытать новую краску для самолёта, не нужно строить самолёт.

Итак, модель всегда связана не только с оригиналом, но и с конкретной задачей, которую мы хотим решить с помощью модели.

Для любого оригинала можно построить множество разных моделей. Например, моделью человека может служить его фотография, паспорт, генетический код, манекен, рентгеновский снимок, биография. Зачем столько? Дело в том, что каждая из этих моделей отражает только те свойства, которые важны при решении конкретной задачи. Такие свойства в теории моделирования называют существенными.

Вместе с тем одна и та же модель может описывать множество самых разных оригиналов. Например, в различных задачах атом, муха, человек, автомобиль, высотное здание, даже планета Земля могут быть представлены как материальные точки (если размеры соседних объектов и расстояния между ними значительно больше).


Модель — это объект, который обладает существенными свойствами другого объекта или процесса (оригинала) и используется вместо него.

Назовите свойства самолёта, существенные с точки зрения:

а) конструктора;
б) дизайнера;
в) экономиста;
г) лётчика;
д) бортпроводника;
е) пассажира.

Практически всё, что мы делаем с помощью компьютеров, — это моделирование. Например, база данных библиотеки — это модель реального хранилища книг, компьютерный чертёж — это модель детали и т.д.


Моделирование — это создание и исследование моделей для изучения оригиналов.

С помощью моделирования можно решать задачи четырёх типов:

• изучение оригинала (в научных и учебных целях);
• анализ («что будет, если . ») — прогнозирование влияния различных воздействий на оригинал;
• синтез («как сделать, чтобы . ») — управление оригиналом;
• оптимизация («как сделать лучше всего . ») — выбор наилучшего решения в данных условиях.

Назовите задачи, которые решаются в каждом случае.

а) Даниил считает, как купить новый планшетный компьютер по минимальной цене.
б) Кирилл выясняет, будет ли плавать в воде кусок пластика.
в) Константин проверяет, выдержит ли верёвка вес альпиниста.
г) Василий хочет сделать такой стол, который выдержит нагрузку в 200 кг.
д) Алёна изучает строение молекулы воды.


Следующая страница Какие бывают модели?


Cкачать материалы урока

Сайт учителя информатики. Технологические карты уроков, Подготовка к ОГЭ и ЕГЭ, полезный материал и многое другое.

Информатика. Учебник для 9 класса (по учебнику К. Ю. Полякова, Е.А. Еремина, базовый уровень)

§13. Модели и моделирование.

Что такое модель?

Ключевые слова:

При слове «модель» у многих, наверное, появляется мысль о моделях самолётов, кораблей, танков и другой техники, которые стоят на полках магазинов. Однако слово «модель» имеет более широкое значение. Например, игрушки, в которые играют дети всех возрастов, — это модели реальных объектов, с которыми они сталкиваются в жизни (или столкнутся в будущем).

Говоря о модели, мы всегда указываем на какой-то другой объект (процесс, явление), например: «Глобус — это модель Земли». Здесь другой объект — это Земля, он называется оригиналом. Объект становится моделью только тогда, когда есть оригинал, модели без оригинала не существует.

Зачем вообще нужны модели? Они появляются тогда, когда мы хотим решить какую-то задачу, связанную с оригиналом, а изучать оригинал трудно или даже невозможно:

• оригинал не существует; например, учебники истории — это модели общества, которого уже нет; возможные последствия ядерной войны учёные изучали на моделях, потому что ставить реальный эксперимент было бы безумием;
• исследование оригинала дорого или опасно для жизни, например, при управлении ядерным реактором, испытании скафандра для космонавтов, создании нового самолёта или корабля;
• оригинал сложно или невозможно исследовать непосредственно, например Солнечную систему, молекулы и атомы, очень быстрые процессы в двигателях внутреннего сгорания, очень медленные движения материков;
• нас интересуют только некоторые свойства оригинала; например, чтобы испытать новую краску для самолёта, не нужно строить самолёт.

Итак, модель всегда связана не только с оригиналом, но и с конкретной задачей, которую мы хотим решить с помощью модели.

Для любого оригинала можно построить множество разных моделей. Например, моделью человека может служить его фотография, паспорт, генетический код, манекен, рентгеновский снимок, биография. Зачем столько? Дело в том, что каждая из этих моделей отражает только те свойства, которые важны при решении конкретной задачи. Такие свойства в теории моделирования называют существенными.

Вместе с тем одна и та же модель может описывать множество самых разных оригиналов. Например, в различных задачах атом, муха, человек, автомобиль, высотное здание, даже планета Земля могут быть представлены как материальные точки (если размеры соседних объектов и расстояния между ними значительно больше).

Модель — это объект, который обладает существенными свойствами другого объекта или процесса (оригинала) и используется вместо него.

Назовите свойства самолёта, существенные с точки зрения:

а) конструктора;
б) дизайнера;
в) экономиста;
г) лётчика;
д) бортпроводника;
е) пассажира.

Практически всё, что мы делаем с помощью компьютеров, — это моделирование. Например, база данных библиотеки — это модель реального хранилища книг, компьютерный чертёж — это модель детали и т.д.

Моделирование — это создание и исследование моделей для изучения оригиналов.

С помощью моделирования можно решать задачи четырёх типов:

• изучение оригинала (в научных и учебных целях);
• анализ («что будет, если …») — прогнозирование влияния различных воздействий на оригинал;
• синтез («как сделать, чтобы …») — управление оригиналом;
• оптимизация («как сделать лучше всего …») — выбор наилучшего решения в данных условиях.

Назовите задачи, которые решаются в каждом случае.

а) Даниил считает, как купить новый планшетный компьютер по минимальной цене.
б) Кирилл выясняет, будет ли плавать в воде кусок пластика.
в) Константин проверяет, выдержит ли верёвка вес альпиниста.
г) Василий хочет сделать такой стол, который выдержит нагрузку в 200 кг.
д) Алёна изучает строение молекулы воды.

Какие бывают модели?

Существует множество классификации моделей, каждая из которых отражает какое-то одно свойство. Универсальной классификации моделей нет.

По своей природе модели делятся на материальные (физические, предметные) и информационные.

Материальные модели «можно потрогать» — это игрушки, уменьшенные копии самолётов и кораблей, чучела животных, учебные модели молекул и т. п.

Информационные модели — это информация о свойствах оригинала и его связях с внешним миром. Среди них выделяют вербальные модели (словесные, мысленные) и знаковые модели, записанные с помощью какого-то формального языка:

• графические (схемы, карты, фотографии, чертежи);
• табличные;
• математические (формулы);
• логические (варианты выбора на основе анализа условий);
• специальные (ноты, химические формулы и т. п.).

Различают статические и динамические модели.

В статических моделях предполагается, что интересующие нас свойства оригинала не изменяются во времени.

Динамические модели описывают движение, развитие, изменение.

Какие из этих моделей статические, а какие — динамические:

а) модель полёта шарика;
б) фотография;
в) видеозапись;
г) история болезни;
д) анализ крови;
е) модель молекулы воды;
ж) модель развития землетрясения;
з) модель вращения Луны вокруг Земли?

Динамические модели могут быть дискретными и непрерывными.

Модель называется дискретной, если она описывает поведение оригинала только в отдельные моменты времени. Например, модель колонии животных определяет их численность один раз в год.

Непрерывная модель описывает поведение оригинала для всех моментов времени из некоторого временного промежутка. Например, формула у = sin х и график этой функции — это непрерывные модели. Так как компьютер работает только с дискретными данными, все компьютерные модели — дискретные.

По характеру связей модели делятся на детерминированные и вероятностные.

В детерминированных моделях связи между исходными данными и результатами жёстко заданы, при одинаковых исходных данных всегда получается один и тот же результат (например, при расчёте по известным формулам).

Вероятностные модели учитывают случайность событий в реальном мире, поэтому при одних и тех же условиях результаты нескольких испытаний модели могут отличаться. К вероятностным относятся модели броуновского движения частиц, полёта самолёта с учётом ветра, движения корабля при морском волнении, поведения человека. В результате эксперимента с такими моделями определяют некоторые средние величины по результатам серии испытаний, например среднюю скорость движения частиц, среднее отклонение корабля от курса и т. п. Несмотря на случайность, эти результаты достаточно стабильны, т. е. мало меняются при повторных испытаниях.

Используя дополнительные источники, выясните, от каких иностранных слов произошли слова «вербальный», «статический», «динамический», «детерминированный».

По материалам параграфа составьте в тетради схемы различных классификаций моделей.

Имитационные модели используются в тех случаях, когда поведение сложной системы нельзя (или крайне трудно) предсказать теоретически, но можно смоделировать её реакцию на внешние условия. Для того чтобы найти оптимальное (самое лучшее) решение задачи, нужно выполнить моделирование при многих возможных вариантах и выбрать наилучший из них. Такой метод часто называют методом проб и ошибок.

Имитационные модели позволяют очень точно описать поведение оригинала, но полученные результаты справедливы только для тех случаев, которые мы моделировали (что случится в других условиях — непонятно). Примеры использования имитационных моделей:

• испытание лекарств на мышах, обезьянах, группах добровольцев;
• модели биологических систем;
• экономические модели управления производством;
• модели систем массового обслуживания (банки, магазины и т. п.). Для понимания работы процессора можно использовать его имитационную модель, которая позволяет вводить команды в определённом формате и выполнять их, и показывает изменение значений регистров (ячеек памяти) процессора. Подобные модели применяют в том случае, когда нужно написать программу для системы, на которой её невозможно отлаживать (например, для микропроцессора, встроенного в бытовую технику). Такой подход называют кросс-программированием: программа пишется и отлаживается в одной системе, а работать будет в другой. В этом случае другую систему приходится моделировать с помощью имитационной модели.

Игровые модели позволяют учитывать действия противника, например, при моделировании военных действий, соревнований, конкуренции в бизнесе. Задача игрового моделирования — найти лучшую стратегию в игре — план действий, который даёт наилучшие результаты даже в том случае, когда противник играет безошибочно. Этими вопросами занимается теория игр — раздел математики, одним из создателей которого был американский учёный Джон фон Нейман.

Адекватность моделей

Итак, при моделировании мы заменяем один объект (объект — оригинал) другим. Поэтому всегда возникает вопрос, можно ли верить полученным результатам. Иначе говоря, будет ли оригинал вести себя так же, как и модель?

Адекватность модели — это совпадение существенных свойств модели и оригинала в рассматриваемой задаче.

Используя дополнительные источники, выясните, от какого иностранного слова произошло слово «адекватный».

Адекватность означает, что результаты моделирования:

• не противоречат выводам теории, например законам сохранения (вещества, энергии и т. п.);
• подтверждаются экспериментом с оригиналом.

Таким образом, адекватность модели окончательно можно доказать только экспериментом: если результаты нашего моделирования близки к наблюдаемым на практике, это означает, что модель адекватна.

Для того чтобы вычислить ошибку моделирования, нужно модуль разности между результатом моделирования X и результатом эксперимента X* разделить на результат эксперимента и умножить на 100%:


Величина «дельта икс» — называется относительной ошибкой. На практике модель обычно считается адекватной, если относительная ошибка не превышает 10%.

Феофан построил математическую модель, которая позволяет прогнозировать изменение веса кошки. Для какого периода времени модель Феофана адекватна?


Нужно понимать, что любая модель отличается от оригинала, поэтому она может быть адекватна только при определённых условиях — в той задаче, для решения которой она создавалась. Например, модель деления амёб (через некоторый интервал времени каждая амёба делится надвое) адекватна только при малом количестве амёб и небольших интервалах наблюдения, иначе амёбы заполнили бы всё пространство.

Во многих случаях результаты моделирования — это некоторые числа, измеренные или рассчитанные по результатам эксперимента с моделью. Это могут быть, например, сила, расстояние, скорость, ускорение, давление и др. Чаще всего эти величины для модели и оригинала будут различаться, поэтому нужно уметь пересчитывать «модельные» данные в соответствующие значения для оригинала. Этими вопросами занимается теория подобия. Простейший пример — работа с картой. Расстояние, измеренное по карте, нужно умножить на масштабный множитель, тогда получится соответствующее расстояние на реальной местности.

Выводы

• Модель — это объект, который обладает существенными свойствами другого объекта, процесса или явления (оригинала) и используется вместо него.

• Моделирование — это создание и исследование моделей для изучения оригиналов.

• С помощью моделирования можно решать задачи четырёх типов:

1) изучение оригинала;
2) анализ — прогнозирование влияния различных воздействий на оригинал;
3) синтез — управление оригиналом;
4) оптимизация — выбор наилучшего решения в данных условиях.

• Универсальной классификации моделей нет. По своей природе модели делятся на материальные и информационные.

• Адекватность модели — это совпадение существенных свойств модели и оригинала в рассматриваемой задаче. Проверить адекватность можно только путём эксперимента с оригиналом.

Нарисуйте в тетради интеллект-карту этого параграфа.

Вопросы и задания

1. Что вы думаете по поводу другого определения модели: «Модель — это упрощённое представление реального объекта, процесса или явления»?
2. Приведите примеры разных моделей человека. Для решения каких задач они предназначены?
3. Приведите примеры моделей, с которыми мы работаем на компьютерах.
4. К какому типу (типам) можно отнести следующие модели?

а) Каляка — это маляка с тремя грымзиками.
б) а 2 + b 2 = с 2 .
в) Если горит красный свет, то стой. Если горит зелёный свет — иди.
г) 2Н2 + O2 = 2Н2O.

Используйте разные классификации.

5. Какую модель — вероятностную или детерминированную — вы рекомендуете выбрать для исследования движения судна в шторм? Почему?
6. Сравните достоинства и недостатки имитационных и теоретических моделей (например, записанных в виде формул).
7. Верно ли, что модели, используемые при создании компьютерных игр, это игровые модели? Обоснуйте вашу точку зрения.
8. Как можно доказать, что модель неадекватна?
9. Почему ни одна модель не может быть полностью адекватна оригиналу?
10. Выполните по указанию учителя задания в рабочей тетради.

а) «Анализ и синтез»
б) «Детерминированные и вероятностные модели»
в) «Игровые модели»
г) «Адекватность моделей»


В настоящее время уровень развития информационно-технических средств обработки, хранения и передачи информации развит настолько, что их использование встречается практически во всех сферах деятельности человека. Современные условия развития общества требуют от специалистов быстрого поиска и принятия правильных решений сложившихся задач. Основным средством, выступающим в роли помощника, в подобных случаях является компьютер. Вследствие широкого распространения компьютеров и информационного бума, который переживает человечество, с азами информатики должен быть знаком всякий грамотный современный человек.

Данный учебник раскрывает понятие информатики через его основополагающие компоненты – информацию и компьютер. Рассматриваются основные разделы современной информатики как комплексной научно-технической дисциплины.

Учебник состоит из двенадцати глав. В первой и второй главах раскрывается понятие структуры информатики. Большое внимание уделено системам счисления и способам кодирования информации. Рассматриваются способы и особенности хранения информации на внешних носителях.

В третьей главе внимание уделено аппаратным и программным средствам реализации информационных технологий. Рассмотрены поколения ЭВМ, магистрально-модульный принцип построения компьютера, основные и периферийные устройства персонального компьютера, а также классификация программного обеспечения.

В четверной, пятой, шестой и седьмой главах раскрываются основные приемы в работе с операционной системой Microsoft Windows 2000, текстовым процессором Microsoft Office Word 2003, табличным процессором Microsoft Office Excel 2003 и презентациями Microsoft Office Power Point 2003. Предложены упражнения для самостоятельного освоения описанных алгоритмов работы с программами.

В восьмой главе рассматриваются вопросы, касающиеся алгоритмизации и языков программирования. В ней дается понятие алгоритма, его свойств, способов описания и разновидностей, раскрывается понятие о языках программирования, компиляторах и видах программирования.

В девятой главе предложен материал, касающийся моделирования функциональных и вычислительных задач на компьютере. Рассматриваются понятие модели и моделирования, формализация поставленных задач, информационное и компьютерное моделирование задач на ЭВМ.

Десятая глава посвящена особенностям функционирования компьютерных сетей. Раскрываются вопросы о видах компьютерных сетей, об особенностях передачи сигнала по различным каналам соединения, рассматриваются основные топологии локальных сетей. Большое внимание уделено организации глобальной сети Интернет и ее основным службам – Всемирной паутине и электронной почте, а также общению в сети.

В одиннадцатой главе рассматриваются вопросы защиты информации и сведений, составляющих государственную тайну, методы и средства защиты информации, составляющие элементы информационной безопасности, даны классификация и характеристика компьютерных вирусов.

Двенадцатая глава посвящена изучению баз данных, их разновидностям и системам управления базами данных. Предложен материал по работе с СУБД Microsoft Office Access 2003. Упражнения для самостоятельной работы помогут более глубоко и лучше освоить основные операции в данной программе.

Представление информации в ЭВМ

1.1. Информатика. Предмет информатики. Основные задачи информатики

Задачи накопления (хранения), обработки и передачи информации стояли перед человечеством на всех этапах его развития. Каждому этапу соответствовал определенный уровень развития средств информационного труда, прогресс развития которых всякий раз придавал человеческому обществу новое качество. Ранее были выделены основные этапы обращения с информацией, и они являются общими для всех наук при обработке информации с помощью ЭВМ. Научным фундаментом для их решения стала такая наука, как информатика.

Информатика – комплексная научно-техническая дисциплина, занимающаяся изучением структуры и общих свойств информации, информационных процессов, разработкой на этой основе информационной техники и технологии, а также решением научных и инженерных проблем создания, внедрения и эффективного использования компьютерной техники и технологии во всех сферах общественной практики.

Истоки информатики можно искать в глубине веков. Много столетий тому назад потребность выразить и запомнить информацию привела к появлению речи, письменности, счета. Люди пытались изобретать, а затем совершенствовать способы хранения, обработки и распространения информации. До сих пор сохранились свидетельства попыток наших далеких предков сохранять информацию – примитивные наскальные рисунки, записи на берестяной коре и глиняных дощечках, затем рукописные книги.

Появление в ХVI веке печатного станка позволило значительно увеличить возможности человека обрабатывать и хранить нужные сведения. Это явилось важным этапом развития человечества. Информация в печатном виде была основным способом хранения и обмена и продолжала им оставаться вплоть до середины ХХ века. Только с появлением ЭВМ возникли принципиально новые, гораздо более эффективные способы сбора, хранения, обработки и передачи информации (рис. 1.1).


Рисунок 1.1. Развитие способов хранения информации

Появление электронно-вычислительных машин позволило обрабатывать, а впоследствии и передавать информацию со скоростью, в несколько миллионов раз превышающей скорость обработки (рис. 1.2) и передачи информации человеком (рис. 1.3).


Рисунок 1.2. Развитие способов обработки информации


Рисунок 1.3. Развитие способов передачи информации

Основу современной информатики образуют три составные части, каждая из которых может рассматриваться как относительно самостоятельная научная дисциплина (рис. 1.4).

Теоретическая информатика – часть информатики, занимающаяся изучением структуры и общих свойств информации и информационных процессов, разработкой общих принципов построения информационной техники и технологии. Она основана на использовании математических методов и включает в себя такие основные математические разделы, как теория алгоритмов и автоматов, теория информации и теория кодирования, теория формальных языков и грамматик, исследование операций и др.).

Средства информатизации (технические и программные) – раздел, занимающийся изучением общих принципов построения вычислительных устройств и систем обработки и передачи данных, а также вопросов, связанных с разработкой систем программного обеспечения.

Информационные системы и технологии – раздел информатики, связанный с решением вопросов анализа потоков информации, их оптимизации, структурирования в различных сложных системах, с разработкой принципов реализации в данных системах информационных процессов.

Информатика находит широкое применение в различных областях современной жизни: в производстве, науке, образовании и других сферах деятельности человека.

Развитие современной науки предполагает проведение сложных и дорогостоящих экспериментов, таких, как, например, при разработке термоядерных реакторов. Информатика позволяет заменить реальные эксперименты машинными. Это экономит колоссальные ресурсы, дает возможность обработать полученные результаты самыми современными методами. Кроме того, такие эксперименты занимают гораздо меньше времени, чем настоящие. А в некоторых областях науки, например, в астрофизике, проведение реального

Читайте также: