Рабочая модель двигателя внутреннего сгорания конструктор haynes combustion engine

Обновлено: 15.05.2024

Дорогие друзья, я искренни рад видеть вас на своем канале « БЛОГ КОЛЛЕКЦИОНЕРА ». Подписавшись на мой канал, вы всегда будете в курсе последних интересных новинок из мира масштабных моделей автотранспорта.

Вот я вам все рассказываю о моделях автомобилей, а ведь в автомобилях есть одна очень важная деталь, без которой она не сможет существовать. Это двигатель.

И не важно, будет он бензиновый, дизельный или электрический. Без двигателя автомобиль далеко не уедет. Даже с бугра.

Такое вот получилось предисловие перед обзором масштабной модели двигателя. Да, вы не ослышались. Статья будет о модели двигателя.

Упаковка представляет собой металлическую коробочку, в которой находится детали. Каждая деталь на своем месте в специальной мягкой прямоугольной штуке (не знаю, как ее еще назвать).

Материал, который применяется в данном макете двигателя: металл и алюминий. А общий вес после сборки будет составлять 1 килограмм 600 грамм.

В наборе есть подробная инструкция для сборки, правда на китайском, но по картинкам все понятно. Помимо деталей, в наборе винтики, ключи (шестигранники), смазка.

В двигателе не предусмотрено масло, но трущиеся детали все же необходимо смазывать. Несколько капель на коленвал и распредвалы, и все будет работать долго.

Перед нами шестнадцати клапанный четырехцилиндровый двигатель. Благодаря данному макету, каждый из вас сможет собрать настоящий мотор, потому как он практически не упрощен. Есть, конечно, моменты, но не критичны.

Шестнадцать клапанов с пружинками и гидрокомпенсаторами. Их не стали разделять на впуск и выпуск, а просто сделали одного размера. Собственно в данной модели двигателя это и не нужно. Он у нас на электротяге.

В поддоне батарея на 700 мАч, благодаря которой мотор работает 30 минут до полного разряда. 4 часа подзарядки и мотор снова в работе.

После полной сборки, необходимо будет собрать стартер, генератор и прикрутить масляный фильтр. Сзади устанавливается маховик.

Спереди устанавливаются шкивы и водяной насос, а так же звездочки на распредвалах. Привод у него цепной, и даже есть натяжители цепи.

Генератор и водяной насос (помпа) работают за счет ремней.

К поддону крепятся ножки, чтобы двигатель устойчиво стоял на ровной поверхности. Его размеры 120*150*182 миллиметров. Общее количество деталей – 357 штук.

Мне интересно, если бы данный двигатель выпускали в журналах, как ГАЗ-21 «Волга» и другие подобные серии. Покупали бы вы? Ну и в целом пишите, как вам эта модель.

Оставайтесь с нами, и вы будете всегда в курсе интересных новостей ПОДПИСАТЬСЯ НА КАНАЛ



Аксиальный ДВС Duke Engine

Мы привыкли к классическому дизайну двигателей внутреннего сгорания, который, по сути, существует уже целый век. Быстрое сгорание горючей смеси внутри цилиндра приводит к увеличению давления, которое толкает поршень. Тот, в свою очередь, через шатун и кривошип крутит вал.


Классический ДВС

Если мы хотим сделать двигатель помощнее, в первую очередь нужно увеличивать объём камеры сгорания. Увеличивая диаметр, мы увеличиваем вес поршней, что отрицательно сказывается на результате. Увеличивая длину, мы удлиняем и шатун, и увеличиваем весь двигатель в целом. Или же можно добавить цилиндров — что, естественно, также увеличивает результирующий объём двигателя.

image

С такими проблемами столкнулись инженеры ДВС для первых самолётов. Они, в конце концов, пришли к красивой схеме «звездообразного» двигателя, где поршни и цилиндры расположены по кругу относительно вала через равные углы. Такая система хорошо охлаждается потоком воздуха, но очень уж она габаритная. Поэтому поиски решений продолжались.

В 1911 году Macomber Rotary Engine Company из Лос-Анджелеса представила первый из аксиальных (осевых) ДВС. Их ещё называют «бочковыми», двигателями с качающейся (или косой) шайбой. Оригинальная схема позволяет разместить поршни и цилиндры вокруг основного вала и параллельно ему. Вращение вала происходит за счёт качающейся шайбы, на которую поочерёдно давят шатуны поршней.

У двигателя Макомбера было 7 цилиндров. Изготовитель утверждал, что двигатель был способен работать на скоростях от 150 до 1500 об/мин. При этом на 1000 об/мин он выдавал 50 л.с. Будучи изготовлен из доступных в то время материалов, он весил 100 кг и имел размеры 710×480 мм. Такой двигатель был установлен в самолёт авиатора-первопроходца Чарльза Фрэнсиса Уолша «Серебряный дротик Уолша».

Не остались в стороне и советские инженеры. В 1916-м году появился двигатель конструкции А. А. Микулина и Б. С. Стечкина, а в 1924 г — двигатель Старостина. Об этих двигателях знают, пожалуй, только любители истории авиации. Известно, что детальные испытания, проведенные в 1924 г, выявили повышенные потери на трение и большие нагрузки на отдельные элементы таких двигателей.

image


Двигатель Старостина из музея авиации в Монино

Но мало кто знает, что Делореан хотел дополнить уникальный внешний вид машины ещё и уникальным мотором — среди найденных после его смерти чертежей были и чертежи аксиального ДВС. Судя по его письмам, он задумал такой двигатель ещё в 1954 году, а всерьёз принялся за разработку в 1979-м. В двигателе Делореана было три поршня, и они располагались равносторонним треугольником вокруг вала. Но каждый поршень был двусторонним — каждый из концов поршня должен был работать в своём цилиндре.

image


Чертёж из тетради Делореана


Экзотический вариант аксиального двигателя — «двигатель Требента»

Тем не менее, такие двигатели не получили широкого распространения — в большой авиации постепенно состоялся переход на турбореактивные двигатели, а в автомобилях по сию пору используется схема, в которой вал перпендикулярен цилиндрам. Интересно только, почему такая схема не прижилась в мотоциклах, где компактность пришлась бы как раз кстати. По-видимому, они не смогли предложить какой-либо существенной выгоды по сравнению с привычным нам дизайном. Сейчас такие двигатели существуют, но устанавливаются в основном в торпедах — благодаря тому, как хорошо они вписываются в цилиндр.

Вариант под названием "Цилиндрический энергетический модуль" с двусторонними поршнями. Перпендикулярные штоки в поршнях описывают синусоиду, двигаясь по волнистой поверхности

Главная отличительная черта аксиального ДВС — компактность. Кроме того, в его возможности входит изменение степени сжатия (объёма камеры сгорания) просто путём изменения угла наклона шайбы. Шайба качается на валу благодаря сферическому подшипнику.

Однако новозеландская компания Duke Engines в 2013 году представила свой современный вариант аксиального ДВС. В их агрегате пять цилиндров, но всего лишь три форсунки для впрыска топлива и — ни одного клапана. Также интересной особенностью двигателя является тот факт, что вал и шайба вращаются в противоположных направлениях.

Внутри двигателя вращаются не только шайба и вал, но и набор цилиндров с поршнями. Благодаря этому удалось избавиться от системы клапанов — движущийся цилиндр в момент зажигания просто проходит мимо отверстия, куда впрыскивается топливо и где стоит свеча зажигания. На стадии выпуска цилиндр проходит мимо выпускного отверстия для газов.

Благодаря такой системе количество необходимых свечей и форсунок получается меньшим, чем количество цилиндров. А на один оборот приходится в сумме столько же рабочих ходов поршня, как у 6-цилиндрового двигателя обычного дизайна. При этом вес аксиального двигателя на 30% меньше.

Кроме того, инженеры из Duke Engines утверждают, что и степень сжатия их двигателя превосходит обычные аналоги и составляет 15:1 для 91-го бензина (у стандартных автомобильных ДВС этот показатель равен обычно 11:1). Все эти показатели могут привести к уменьшению расхода топлива, и, как следствие — к уменьшению вредного воздействия на окружающую среду (ну или к увеличению мощности двигателя — в зависимости от ваших целей).

image

Сейчас компания доводит двигатели до коммерческого применения. В наш век отработанных технологий, диверсификации, экономии на масштабе и т.п. сложно представить, как можно серьёзно повлиять на индустрию. В Duke Engines, по-видимому, это тоже представляют, поэтому намереваются предлагать свои двигатели для моторных лодок, генераторов и малой авиации.


Более 100 лет известен такой механизм, как двигатель внутреннего сгорания.

Двигатели данного типа применяются повсеместно, как наиболее распространённый способ преобразования химической энергии в механическое движение.

Однако существует еще один вид совершенно замечательного двигателя — который называется линейным двигателем внутреннего сгорания. Простота устройства, высокая скорость работы и эффективность — делают такой двигатель весьма перспективным, для использования в рамках множества задач.

Все двигатели внутреннего сгорания можно условно подразделить на три крупных вида:

в них процесс осуществления полезной работы и наполнения цилиндра двигателя новой порцией смеси для сжигания, — производится за 2 движения поршня. При движении поршня вниз — производится полезная работа, при движении его в обратном направлении, то есть верх, — осуществляется сжатие поступивший смеси, для последующего её сжигания;

в них процесс осуществления полезной работы, продувка цилиндра от продуктов сгорания и заполнение его новой порцией смеси, — осуществляется за 4 движения поршня:

  • при первом движении поршня вниз, осуществляется полезная работа;
  • при последующем движении поршня вверх, происходит продувка цилиндра от продуктов сгорания;
  • при втором движении поршня вниз, осуществляется заполнение цилиндра свежей порцией смеси;
  • при последующем втором движении поршня вверх, происходит сжатие поступившей свежей смеси, для последующего её сжигания.

суть которых заключается в том, что сжигание смеси происходит за счёт резкого повышения давления, а следовательно и температуры, которая собственно и поджигает поступившую в цилиндр смесь.

Кроме того, существуют различные комбинации между этими перечисленными выше тремя видами. Однако, несмотря на попытки инженеров как-то скомбинировать эти три подхода, в основном, прижились именно они, в «чистом» виде.

Несмотря на широкое распространение двигателей внутреннего сгорания, существует один особый подвид двигателей, который хоть и не получил широкое распространение (на которое он вправе рассчитывать), тем не менее, в некоторых сферах он всё равно применяется.

Суть таких двигателей заключается в том, что они существенно проще классических двигателей внутреннего сгорания. Проще потому, что в их конструкции полностью исключена такая массивная и сложная система деталей, как «кривошипно-шатунный механизм».

Оппозитный поршневой двигатель с внешним сжатием


Двигатель с противоположным поршнем и внутренним сжатием

Однопоршневой двигатель одностороннего действия с возвратным механизмом


Свободнопоршневой двигатель


Свободнопоршневой двигатель двойного действия


В обычных двигателях данный механизм служит для того, чтобы произвести полезную работу, а также вернуть поршень в изначальное положение, которое он занимал до начала движения.

Система получается достаточно стабильной, прогнозируемой, может быть легко настраиваемой.

Однако, такое усложнение системы не проходит даром, — это приводит к тому, что существенно усложняется механизм в целом, утяжеляется двигатель, возникают разнообразные паразитные явления, которые приводят к повышенному износу цилиндро-поршневой группы.

Среди таких явлений можно назвать знакопеременные нагрузки на поршень, которые оказывают на него раскачивающие движения влево/вправо. Данные движения приводят к повышенному износу поршня и цилиндра.

Кроме того, наличие больших вращающихся масс, приводит к паразитным вибрациям, которые расшатывают конструкцию в целом и увеличивают затраты энергии на осуществление движения.

В отличие от таких классических двигателей, линейные двигатели внутреннего сгорания лишены всех этих недостатков: по своей сути, они представляют собой просто поршень, движущийся прямолинейно и не имеющий каких-либо кривошипно-шатунных механизмов.

Каким же тогда образом, поршень возвращается в первоначальное положение? Для этого существует множество схем.

  1. использование противоположной рабочему цилиндру камеры, — в качестве газовой пружины;
  2. уравновешивание одного поршня другим, точно таким же поршнем, движущимся в противоположном направлении;
  3. связывание двух поршней движущихся в противоположных направлениях — жёсткой рычажной сцепкой;
  4. отсутствие какого-либо балансирования движущегося поршня, за счёт того, что вся система установлена на жестком массивном основании. Это позволяет гасить возникающие вибрации;
  5. иные конструкции, а также комбинации всего вышеперечисленного.

По сути, для создания такого генератора необходимо просто быстро перемещать, закреплённый на связанной с поршнем оси, сильный магнит, сквозь кольцевую обмотку статора, например, как в этом «трясущемся фонарике»:

Благодаря своей простоте, данные двигатели могут развивать достаточно большие скорости. В частности, имеется информация о достижении такими двигателями частоты в 390 Герц (390 движений поршня в секунду и, соответственно, 23400 – в минуту).

Кроме того, двигатели данного типа могут быть использованы в качестве компактных и мощных источников энергии, достаточно простой конструкции. Именно это привлекает к данным двигателям повышенное внимание оборонной промышленности по всему миру.

Некоторые исследователи проводят достаточно интересные опыты, которые позволяют детально оценить эффективность таких двигателей.

В частности, группой учёных была проведена серия работ, направленная на исследование применимости линейных двигателей в военных нуждах.

Исследователи во главу угла ставили возможность создания миниатюрных систем и возможность обеспечивать высокую плотность хранимой энергии, несмотря на свои небольшие размеры.

Для этого был разработан двухтактный двигатель линейного типа, который для возврата поршня в изначальное положение использовал в пружину, с прямоугольным сечением проволоки в ней.

image


(Источник картинки: "№4" — в списке использованных источников, под этой статьёй)

Тесты показали, что генераторы данного типа обладают очень большим потенциалом. А именно, они могут работать на очень большой частоте, в течение продолжительного времени.

image


Генератор на 300 ватт и на 5 ватт — в сравнении со стандартной батарейкой, формата АА (Источник картинки: "№4" — в списке использованных источников, под этой статьёй)

В ходе поставленного эксперимента показанный на рисунке генератор мощностью 5-10 Вт проработал в течение 100 часов, работая с частотой в 390 Герц. При этом КПД генератора составил 90%.

В ходе тестирования были выявлены следующие существенные моменты:

  • из-за отсутствия жесткой связи с отсутствующей кривошипно-шатунной системой, генератор имеет переменную степень сжатия, которая позволяет ему легко работать с разными видами топлива, в режиме цикла Дизеля. Другими словами, двигатель может легко воспламенять любое топливо, используя в качестве зажигающего воздействия высокую температуру от сжатия;
  • благодаря отсутствию знакопеременных нагрузок, «раскачивающего» типа, которые являются одними из основных, в стандартных двигателях с кривошипно-шатунным механизмом, данный генератор может хорошо работать с минимальной смазкой или совсем без оной;
  • плотность энергии, хранимой в качестве химического топлива и вырабатываемая с использованием данного генератора, — превосходит как аккумуляторные батареи любого типа, так и топливные элементы;
  • миниатюрность размеров, высокая плотность хранения энергии, дешевизна производства — делают генераторы такого типа особенно привлекательными для использования их в качестве миниатюрных источников энергии, для небольших летающих дронов военного назначения.

Почему же, при таких очевидных преимуществах такого типа двигателей, они не получили широкого распространения и не вытеснили так хорошо известные нам двигатели с кривошипно-шатунным механизмом?

Наверное, ответ здесь заключается в том, что мир стал в определенной степени заложником сложившейся инфраструктуры, крупномасштабных производств и сети сервисных компаний, ориентированных на работу с классическими двигателями внутреннего сгорания.

Это одна сторона проблемы, вторая заключается в том, — что линейный двигатель внутреннего сгорания постоянно находится в зоне риска. Это проявляется в том, что двигатели постоянно балансирует на грани разрушения.

Этот риск является следствием того, что быстро движущийся поршень не имеет, как правило, какого-либо физического ограничителя (конструкции двигателей, которые требуют жесткой сцепки между поршнями, — мы сейчас осознанно опустим, так как любой инженер, старается использовать все преимущества такого типа двигателей).

А для этого требуется отказаться от каких-либо жестких сцепок и заставить двигатель работать исключительно с помощью контроля его движения с применением разнообразных факторов: сжимающихся газовых пружин; синхронно движущихся в разных направлениях и так же синхронно сходящихся в центре — уравновешенных поршней и т.д.

Нетрудно заметить из данного описания, что осуществление четкой синхронизации и контролируемого течения данного процесса, является весьма нетривиальной задачей и решается с переменным успехом.

При выходе же данного процесса из-под контроля, — это сразу же приведет к разрушению одного или нескольких поршней, а также цилиндров (ввиду удара поршней — в соответствующие «донышки» цилиндров).

Если же полностью отказаться от идеи устранения вибраций такого двигателя, используя одноцилиндровую схему, — это приведет к возникновению сильных вибраций, которые должны быть погашены массивным основанием.

Есть ещё одна неочевидная проблема, которая касается сложности пуска двигателей данного типа (мы ведь не забыли, что стараемся «выжать» из двигателя всё, поэтому мы не используем каких-либо жестких сцепок).

Обычно, пуск двигателя такого типа осуществляется с использованием импульса сжатого воздуха.

Все эти причины в своей совокупности, — сдерживают широкое распространение этих двигателей на коммерческом рынке.

Однако, в последнее время, ввиду широкого распространения разнообразных микроконтроллеров, делаются попытки по электронно-компьютерному контролю процессов, протекающих в двигателе рассматриваемого типа.

В частности, наблюдаются следующие подходы:

  1. ШИМ-контроль, когда для управления движением поршней, используется электрогенератор, связанный с движущимся поршнем или поршнями, использующийся в данный момент, в качестве «подруливающего электродвигателя»;
  2. установка точного времени впрыска и зажигания смеси в цилиндр. Современные средства позволяют достаточно точно контролировать местоположение поршня, давление в конкретном цилиндре, а также гарантировано осуществить зажигание смеси. Для этого могут быть использованы разнообразные датчики движения, давления, свечи поверхностного разряда, а также использование в конструкции цилиндров интегрированных в конструкцию цилиндров «форкамер» (данные камеры упрощают зажигание смеси);
  3. наиболее экзотическим из данного списка, является использование электромагнитных впускных и выпускных клапанов, которое позволяет четко контролировать момент и объем впускаемой/выпускаемой смеси. Данное направление является достаточно экстравагантным, хотя и применяется некоторыми компаниями в составе особо прогрессивных двигателей, используемых, в частности, в гонках «формулы-1».

Однако не стоит считать, что линейные двигатели являются исключительно прерогативой научных коллективов и не выходят за пределы «секретных лабораторий».

Многие любители достаточно успешно и легко строят свои действующие модели такого типа двигателей, используя в качестве цилиндров стеклянные трубки, а в качестве поршней — графитовые бобышки.

Например, следующий автор, видео которого приведены ниже, — строит двигатели именно такого типа, для собственного удовольствия.

В качестве источника искры, — используется электронная плата от зажигалки для газовой плиты:

Здесь следует сделать примечание: не все зажигалки для газовых кухонных плит используют пьезоэлектрический либо сетевой электрический источник получения электрической искры. Некоторые зажигалки используют в качестве такого источника маломощные платы, питаемые от одной батарейки размера АА, содержащие повышающую напряжение схему.

Кроме этого, достаточно давно некоторые компании выпускают трамбовки для дорог, которые базируются на двухтактных двигателях внутреннего сгорания. По своей сути, данные устройства являются не чем иным, как линейным двигателем, только используются в сугубо утилитарных целях, «далеких от высоких технологий»:

В целом, можно резюмировать, что разработка подобных линейных двигателей внутреннего сгорания является весьма перспективным занятием. В случае, если этим занимаются любители, данное занятие может быть весьма увлекательным и можно разработать свой собственный миниатюрный двигатель, буквально карманного формата (особенно это легко, при наличии своего токарного станка по металлу)!

Такой двигатель может стать хорошим подспорьем, в получении электроэнергии, при нахождении в местах, далеких от цивилизации.

Только помните, что если этот двигатель будет использоваться для генерации электроэнергии, и будет содержать электрогенератор на постоянных магнитах, данное устройство должно очень хорошо охлаждаться, так как магниты имеют характеристику, называемую «точка Кюри», — то есть это температура, при которой магнит размагничивается.

Так как разработчик электрогенератора вряд ли ставит своей целью «системно размагничивать магниты», — ему стоит учитывать этот существенный момент.

Использованные источники:


Облачные серверы от Маклауд быстрые и безопасные.

Зарегистрируйтесь по ссылке выше или кликнув на баннер и получите 10% скидку на первый месяц аренды сервера любой конфигурации!





К игре

Это, если хотите, фундамент двигателя. Именно к этому узлу так или иначе крепятся все остальные агрегаты. Выбор блока — пожалуй, самый важный и ответственный этап: от того, сколько у вас цилиндров и какой рабочий объем, напрямую зависит стратегия дальнейшей форсировки. И не забывайте, что ваш «бюджет» ограничен!

А заодно и коленчатый вал. Подвижная часть кривошипно-шатунного механизма состоит из поршней с кольцами, коленвала, поршневых пальцев — именно благодаря этому механизму возвратно-поступательное движение переходит во вращение. Этот узел один из самых критичных с точки зрения нагрузки — учитывайте это при создании двигателя.

Основные детали — это распределительный вал (один или несколько), клапаны и передаточные звенья: толкатели, штанги, коромысла и т.д. От газораспределительного механизма зависит, сколько топливно-воздушной смеси поступит в цилиндры, и в какой момент это произойдет.

Регулирование газораспределения зависит от формы распределительных валов. Изменяя форму профиля кулачков, можно влиять на характеристики газораспределения в широких пределах.

Чтобы увеличить мощность, необходимо увеличить количество топливо-воздушной смеси, которая поступает в цилиндры. И если подать в двигатель больше топлива относительно просто, то с воздухом уже сложнее. Наддув в помощь!

Громкие глушители придумали не затем, чтобы стритрейсеры и мотоциклисты мешали вам спать по ночам. У таких систем меньше сопротивление потоку отработанных газов, что положительно сказывается на мощности двигателя. Но учтите, что одним только "прямотоком" мощность поднять сложно — для оптимального результата неплохо установить более производительную впускную систему и топливный насос.

Большой объем и качество подающегося на впуск воздуха — необходимое условие для создания мощного мотора. Впускной коллектор и воздушный фильтр должны обладать минимальным сопротивлением во всем диапазоне оборотов двигателя.

Важно не только загнать в цилиндр побольше "горючего" — также нужно, чтобы воздушно-топливная смесь оптимально заполнила цилиндры. Существуют различные системы смесеобразования: от старого доброго карбюратора до впрыска топлива, который бывает нескольких типов: центральный, распределенный, непосредственный.

Блок двигателя обычно изготавливается либо из чугуна, либо из алюминиевого сплава, однако некоторые компании используют и более хитроумные материалы: например, сочетание алюминиевого и магниевого сплавов.

Главное, что требуется от блока цилиндров — прочность. Чтобы сгорание топливной смеси не разрушило двигатель, в цилиндры обычно помещаются прочные гильзы.

На поршневую группу действуют огромные нагрузки: ведь именно она превращает возвратно-поступательное движение во вращение.

От формы камеры сгорания также зависит эффективность сгорания топливно-воздушной смеси — а значит, и мощность мотора.

Распредвалы регулируют фазы газораспределения: по-простому, это означает — те моменты, в которые открываются и закрываются клапаны.

"Закачать" в мотор больше воздуха можно разными способами: при помощи турбины, которая приводится в действие энергией выхлопных газов или, например, приводным нагнетателем, шнеки которого вращаются коленвалом.

Чтобы двигатель развивал максимальную мощность, впускного воздуха должно быть много — значит, необходимо сделать его максимально плотным. Поэтому чем он холоднее, тем лучше.

Так называемый воздушный фильтр нулевого сопротивления — в действительности это обычный фильтр, но с лучшей пропускной способностью.

В случае с моновпрыском применяется одна форсунка на весь двигатель, в многоточечном уже используется по форсунке на цилиндр, а в системе непосредственного впрыска топливо поступает не во впускной коллектор, а непосредственно в камеру сгорания.


Двигатель внутреннего сгорания — сложная штука. Прежде чем почувствовать себя инженерами, давайте вспомним, из чего он состоит


Собери двигатель





Такой тип двигателя — классика среди машин малого и среднего класса: он компактный и достаточно экономичный. Однако поверьте, потенциал его форсировки очень велик!

Шесть цилиндров — популярное решение для спорткаров и автомобилей бизнес-класса. Больше цилиндров — больше объем. И если на такой мотор поставить наддув…

V8 — это икона, особенно в Америке. Восьмицилиндровые двигатели при достаточно компактных габаритах отличаются высокой мощностью и практически безграничными возможностями для доработок.

Двигатель, в котором ход поршня равен его диаметру. При такой конфигурации достигается оптимальное соотношение между мощностью и крутящим моментом.

Двигатель, в котором ход поршня больше его диаметра. При такой конфигурации достигается высокий крутящий момент, однако без должных настроек максимальная мощность будет невелика.

Двигатель, в котором ход поршня меньше его диаметра. При такой конфигурации мотор легко набирает высокие обороты — и, следовательно, отличается высокой мощностью. Расплата за это — небольшой крутящий момент.

Одна из самых простых схем. На каждый ряд цилиндров предусмотрен только один распредвал, и на каждый цилиндр — по два клапана: один работает на впуск, другой на выпуск. Подобный механизм не лучший с точки зрения эффективности сгорания топливно-воздушной смеси, зато отличается высокой надежностью.

В этом варианте по-прежнему по два клапана на цилиндр (один на впуск, другой на выпуск) — однако они управляются индивидуально: каждый своим распределительным валом. Это позволяет достичь куда большей эффективности сгорания.

Наиболее распространенная современная схема. По два клапана на впуск и выпуск, где каждая пара управляется своим распределительным валом. Подобный механизм оптимален с точки зрения эффективности: он обеспечивает высокую мощность во всем диапазоне оборотов.

Ну, может, не для низких, а для не очень высоких. Распределительные валы с кулачками среднего профиля неплохо подойдут для моторов, которые обладают высоким крутящим моментом в среднем диапазоне оборотов.

Это самый «злой» вариант: распределительные валы с кулачками высокого профиля обеспечивают максимальные мощностные характеристики на высоких оборотах. Если ваш мотор способен развить такие обороты, это — оптимальный вариант.

Один из самых распространенных способов форсировки мотора. Турбокомпрессор, который приводит в действие отработавшие газы, нагнетает в цилиндры дополнительный воздух.

Такой компрессор приводится в действие засчет вращения коленвала. С одной стороны, это отнимает мощность, с другой — большое количество воздуха позволяет “восполнить” потери и получить еще сверху.

Такая система стоит на “гражданских” автомобилях: она обеспечивает приемлемые показатели шумности, но не рассчитана на использование совместно с форсированным мотором.

Система с прямоточным глушителем не только громко звучит, но и обладает пониженным внутренним сопротивлением.

Со стандартным фильтром и воздухозаборником, как на обычных дорожных автомобилях. Большой мощности с такой не добиться.

Самый предпочтительный вариант с точки зрения увеличения мощности: воздух на впуске холоднее, а значит, и плотнее. Максимальное наполнение цилиндров!

Самый простой вариант впрыска топлива, который в свое время пришел на смену карбюратору. В таком варианте используется всего одна форсунка, которая впрыскивает топливо сразу во все цилиндры. Главные недостатки такого механизма — низкая экологичность и эффективность.

В этом варианте в двигателе установлено по отдельной форсунке на каждый цилиндр. Такая механика обеспечивает более широкие возможности по регулировке состава топливно-воздушной смеси, и в то же время остается простой и надежной.

В данном случае топливная смесь подается непосредственно (а откуда, вы думали, название?) в камеру сгорания. Это обеспечивает наибольшую эффективность — как по мощности, так и по экологичности.

image

Шествие двигателей внутреннего сгорания продолжается, при этом в них появляются инновации – от изменяемой степени сжатия до клапанов без кулачков.

Электрические силовые агрегаты в наши дни на пике моды, но эволюция двигателя внутреннего сгорания не замедлилась. На самом деле, новые изменения происходят быстрее, чем когда-либо.

Рассмотрим, например, этот краткий список последних инноваций двигателя: двигатель с турбонаддувом без кулачков; новый дизель с самым низким в мире коэффициентом сжатия; четырехцилиндровый двигатель с переменным коэффициентом сжатия; первый в мире бензиновый двигатель, использующий зажигание при сжатии.

image

Здесь мы собрали фотографии двигателей, предлагающих некоторые из последних инноваций в области силовых агрегатов. От интеллектуальных двигателей грузовиков до крошечных моделей с турбонаддувом, мы предлагаем вам подборку основных достижений последних лет. Пролистайте следующие слайды, чтобы увидеть лучшие из них.

2,2-литровый двигатель Mazda SkyActiv-D имеет самый низкий в мире коэффициент сжатия (14,1:1) среди всех дизельных двигателей, что, как сообщается, дает потребителям множество преимуществ. Более низкие показатели сжатия идут рука об руку с более низким давлением и пониженной температурой в верхней части поршня, что способствует лучшему смешению воздуха и топлива, а также уменьшает проблемы с оксидами азота и сажей, давно ассоциирующиеся с дизельным двигателем, говорит Mazda. Более того, более низкий коэффициент сжатия SkyActiv-D обеспечивает меньшее трение и меньший вес конструкции. На нью-йоркском автосалоне на прошлой неделе японский автопроизводитель объявил, что собирается изменить антидизельные настроения последнего времени, установив новый 2,2-литровый дизельный двигатель на компактный кроссовер CX-5 2019 года.

image

image

Производитель суперкаров Koenigsegg Automotive AB возлагает большие надежды на технологию бескулачкового двигателя, которую он представил на концептуальном автомобиле в 2016 году. Известная как FreeValve, эта технология использует «пневмо-гидравлические-электронные» приводы для управления процессом сгорания в каждом цилиндре. Koenigsegg говорит, что с помощью этих приводов, вместо кулачковых валов, можно более точно управлять процессом сгорания в каждом цилиндре. FreeValve также позволяет люксовому автопроизводителю отказаться от других дорогостоящих автозапчастей, включая корпус дроссельной заслонки, кулачковый привод, ГРМ, выпускной клапан, предкаталитический преобразователь и систему непосредственного впрыска. По слухам, компания готовит технологию для установки на суперкар стоимостью 1,1 миллиона долларов, который будет выпущен в 2020 году. В интервью Top Gear основатель компании Кристиан фон Кёнигсегг (Christian von Koenigsegg) заявил, что FreeValve позволит ему построить автомобиль с нулевым уровнем выбросов и двигателем внутреннего сгорания. «Идея заключается в том, чтобы доказать миру, что даже двигатель внутреннего сгорания может быть полностью СО2-нейтральным», — сказал он.

image

Говорят, что двигатель Nissan VC-Turbo является первым в мире готовым к производству двигателем с переменным коэффициентом сжатия. VC-Turbo разрабатывался более 20 лет, и он использует усовершенствованную многозвеньевую систему для изменения коэффициента сжатия. Во время работы угол наклона многозвеньевых рычагов варьируется, что приводит к регулировке верхней мертвой точки поршней. С изменением положения поршня меняется и степень сжатия. Результат — производительность по требованию. Высокий коэффициент сжатия обеспечивает большую эффективность, в то время как низкий коэффициент сжатия увеличивает мощность и крутящий момент. VC-Turbo доступен в Nissan Altima 2019.

image

3,6-литровый двигатель Pentastar от Fiat Chrysler Automobiles является примером внимательного отношения к деталям и политики постоянного совершенствования. Двигатель использует две ключевые особенности для повышения топливной экономичности и крутящего момента. Первая из них — это регулируемый подъем клапана (VVL). VVL позволяет двигателю оставаться в режиме пониженного подъема до тех пор, пока водитель не потребует больше мощности. Затем он реагирует переключением в режим повышенного подъема для улучшения сгорания топлива. Вторая инновация — это рециркуляция отработавших газов с охлаждением, которая, как говорят, сокращает выбросы вредных веществ, снижает потери при прокачке и позволяет работать без стука при высоких нагрузках двигателя. Эти особенности обеспечивают Pentastar увеличение экономии топлива на 6%, при этом крутящий момент увеличивается на 14,9%. Fiat Chrysler также отмечает, что эти улучшения наблюдаются при оборотах двигателя ниже 3000 об/мин, когда повышенный крутящий момент необходим больше всего.

image

В наши дни производительность двигателя — это не только крутящий момент и лошадиные силы. Речь идет и об эффективности. Toyota доказала это в 2018 году, представив 2,5-литровый четырехцилиндровый двигатель Dynamic Force, который, по имеющимся данным, обладает тепловым КПД около 40%. Это большой шаг вперед, учитывая, что большинство современных двигателей приближаются к 30%, что, в свою очередь, означает, что 70% энергии сгорания топлива теряется в виде тепла. Toyota добилась этого с помощью ряда современных усовершенствований, включая длинный ход, высокий коэффициент сжатия, форсунки с двойными распылителями, интеллектуальную регулировку синхронизации клапанов и непосредственный впрыск топлива. Результат: Экономия топлива на трассе 2018 Camry составляет 29 и 41 мг, что на 26% выше по сравнению с предыдущей моделью.

image

1,5-литровый двигатель EcoBoost от Ford заслуживает внимания, потому что это еще один пример «умного» маленького двигателя, способного управлять относительно большим автомобилем с помощью двух цилиндров. Рядный трехцилиндровый EcoBoost выполняет эту задачу при отключении цилиндра, который определяет ситуацию, когда один цилиндр не нужен, и поэтому автоматически отключает его. Система может отключить или активировать цилиндр всего за 14 миллисекунд для поддержания плавного хода. Однако даже на трех цилиндрах она способна выдать 180 л.с. и 240 Нм крутящего момента (при сгорании 93-октанового топлива). Этот двигатель установлен в европейском Ford Fusion и американском внедорожнике Ford Escape, способном буксировать до 900 кг.

В 2018 году компания Cadillac еще больше увлеклась турбокомпрессорами, представив двигатель Twin Turbo V-8. Twin Turbo использует «горячую V-образную конфигурацию» — то есть устанавливает турбокомпрессоры в верхней части двигателя, в ложбине между головками. Таким образом, инженеры Cadillac утверждают, что они уменьшили общий размер конструкции двигателя и практически ликвидировали отставание турбокомпрессоров. Использованный на Cadillac CT6 V-Sport, новый двигатель выдает примерно 550 л.с. и обеспечивает потрясающий крутящий момент в 850.1 Нм.

image

Для тех, у кого есть страсть к старомодным лошадиным силам и крутящему моменту, у Dodge есть ответ в виде 6,2-литрового высокомощного двигателя HEMI V-8. Двигатель, выдающий 797 л.с. и 958.6 Нм крутящего момента, большую часть своей мощности черпает из 2,7-литрового нагнетателя — самого большого заводского нагнетателя среди всех серийных автомобилей. Наряду с нагнетателем в двигателе используются высокопрочные шатуны и поршни, высокоскоростной клапанный механизм и два двухступенчатых топливных насоса. 6,2-литровый двигатель, используемый в Dodge Challenger Hellcat Redeye, способен принимать огромное количество бензина в высокопроизводительном режиме, опорожняя бак чуть менее чем за 11 минут. Хорошая новость, однако, в том, что при нормальных дорожных условиях Hellcat все еще находится на отметке 10.69 л/100 км. Dodge хвастается тем, что Hellcat является самым быстрым в отрасли маслкаром с разгоном 0-100 км/ч в 3,4 секунды.

image

Поговорим о другой крупной инновации в двигателе 2018 года: Mazda выпустила двигатель SkyActiv-X, который, как говорят, является первым в мире бензиновым двигателем, использующим воспламенение при сжатии. Соединив две классические технологии, инженеры Mazda утверждают, что они объединили высокую тягу бензинового двигателя с эффективностью, крутящим моментом и реакцией дизеля. Ключом к их реализации является технология, известная под названием Spark Controlled Compression Ignition, которая максимально увеличивает зону, в которой возможно воспламенение от сжатия, и обеспечивает плавный переход между воспламенением от сжатия и воспламенением от искры. При внедрении двигателя прошлой осенью Mazda сообщила удивительные цифры: крутящий момент повысился на 10-30%, а КПД — на 20-30% по сравнению с предшественником. Mazda говорит, что двигатель также предлагает большую свободу в выборе передаточных чисел, что еще больше увеличивает экономию топлива и ходовые качества двигателя.


image

Мы большая компания-разработчик automotive компонентов. В компании трудится около 2500 сотрудников, в том числе 650 инженеров.

Мы, пожалуй, самый сильный в России центр компетенций по разработке автомобильной электроники. Сейчас активно растем и открыли много вакансий (порядка 30, в том числе в регионах), таких как инженер-программист, инженер-конструктор, ведущий инженер-разработчик (DSP-программист) и др.

У нас много интересных задач от автопроизводителей и концернов, двигающих индустрию. Если хотите расти, как специалист, и учиться у лучших, будем рады видеть вас в нашей команде. Также мы готовы делиться экспертизой, самым важным что происходит в automotive. Задавайте нам любые вопросы, ответим, пообсуждаем.

Читайте также: