Светомузыка своими руками конструктор

Обновлено: 14.05.2024

Наконец-то, свершилось! Я собрал все компоненты воедино, подключил и, о, чудо, она работает!

Я сделал это! А если получилось у меня, то, значит, и у вас тоже получиться. Цветомузыкальная установка - проще некуда!

Что мне потребовалось:

Купил недорогие электронные компоненты из Китая, идея и разработка AlexGyver . Небольшая доработка от меня, и готово цветомузыкальное устройство.

Но обо всем по порядку. Хочу поделиться с вами как делал и что посчитал нужным изменить.

Собирал устройство по этой схеме, она мне показалась самой оптимальной и универсальной, ниже расскажу почему.

На странице проекта у Alexa предложено много схем, это одна из них.

Светодиодная адресная лента

Ленту приобрёл на AliExpress, такую же как использует AlexGyver. Длина 1 м, но с 30 светодиодами на 1 м пагонный без силиконового покрытия. Самую дишманскую, на пробу взял.

Покупка ленты, кстати сказать, – это была самая затратная часть из всех компонентов на устройство.

Это было год назад, лента почти год лежала и ждала своего часа, все руки не доходили.

Сейчас эта же покупка вам обойдётся в 2 раза дешевле. Производство ленты удешевилось, что-ли, или распродажа на носу .

Контроллер

Купил контроллер Ардуино Нано, но при сборке меня ждал сюрприз.

В процессе сборки оказалось, что Ардуино Нано бывает двух типов, с процессором ATmega 328 и ATmega 168 . По не знанию я конечно же купил ATmega 168, а у него параметры в два раза ниже ATmega 328, естественно, когда я собрал, прошивка, которую так старательно писал Alex, на него не влезла. Пришлось заказывать новую плату и все перепаивать, благо, что паять не много. 😉

Так что, при покупке компонентов имейте это ввиду и не повторите мою ошибку.

Вот такую надо брать, буквы после 328 не так важны.

Так как я выбрал схему со встроенным микрофоном, пришлось покупать и микрофон. Причём, это не простой микрофон, а со встроенным усилителем, на мой взгляд тоже правильное решение для захвата звукового сигнала.

Почему я выбрал схему с микрофоном

На мой взгляд, это самое оптимальное решение, если хотите, чтобы цветомузыка была мобильной, т.е. была переносной. Вы сможете брать её с собой хоть на пикник за город или в гости. Тогда это ваш случай. В данной схеме для работы необходим источник звука и источник питания +5 В. Схема практически не привязана к проводам, источником звука можете быть вы сами или плеер, а источником питания Power Bank, автомобиль или розетка с блоком питания 5 Вольт.

Дополнительные компоненты

Всю мелочёвку - резисторы, конденсаторы я подобрал на работе, но можно купить за копейки в ближайшем магазине радиоэлектроники.

  • Резистор до 500 Ом любой мощности
  • Конденсатор 1000 мкФ 6,3 В и выше
  • Конденсатор до 100 мкФ 6,3 В и выше
  • Конденсатор 10 пФ маркировка 103
  • Потанциомметр от 10 до 100 кОм, но я поставил до 50 кОм и регулировка чувствительности стала более мягкой, не такой резкой, как при 100 кОм.

Вот и все компоненты, не считая модульных плат, но их тоже немного.

Провода для распайки подошли от витой пары, благо этого добра хватает в избытке.

С наступающим! Приближается Новый год, а значит, пора срочно создавать настроение! Ну и как всегда в это время года рождаются десятки электронных схем различных цветомузыкальных установок.

Чего только самобытные мастера не придумают. От трехцветных моргалок до лазерных многолучевых установок с управлением по MIDI интерфейсу.


Как большой поклонник, так называемых адресных светодиодов, хочу показать вам очень простую и удивительную цветомузыку. Я вообще такой ни разу не видел. Пока не собрал за один вечер. Итак, визуализатор звука!

Инструкция


Схема очень простая!

Вам понадобятся Arduino Nano, или Uno. Или какая там у вас есть? Два потенциометра, пять резисторов, пару конденсаторов и линейка (лента) из 180 светодиодов WS2812b. Всё! Светодиодов в линейке может быть 60, 120 или 180.

В визуализаторе с помощью алгоритма быстрого преобразования Фурье выделяются 8 частот (порог чувствительности на каждую частоту свой, снижается от 1 к 8), преобразуются в цвет и выводятся на линейку светодиодов по одному из восьми алгоритмов. Скетч писал Майкл Крампас, парни из Чип и Дипа добавили функционал, а библиотека для светодиодов и быстрого преобразования Фурье (FFT) написана в Адафрут для проекта Piccolo. Библиотека FFT для 128 точек, адаптированная для AVR микроконтроллеров написана на ассемблере.

Сам скетч и библиотеку FFT нужно скачать здесь и здесь.

Не теряйте время на разбор алгоритмов, просто соберите, залейте скетч и наслаждайтесь шоу.
Это всего лишь развлечение!

В момент первого включения нужно сделать пару настроек:

Яркость: удерживайте кнопку color при включении питания. На первых 8 светодиодах будет отображаться радуга светодиодов. С помощью ручки param измените яркость. По завершении нажмите кнопку color еще раз, и ваша конфигурация будет сохранена в памяти.

Длина светодиодной полосы: удерживайте кнопку pattern при включении питания. Отобразится один, два или три красных светодиода. Используйте ручку param, чтобы выбрать длину светодиодной полосы в зависимости от количества красных светодиодов:

1=60 светодиодов
2=120 светодиодов
3=180 светодиодов

По завершении нажмите кнопку pattern еще раз, и ваша конфигурация будет сохранена в памяти.

Алгоритмы

Танцы плюс: пики звуковых сигналов испускаются из центра полосы и исчезают по мере приближения к концам. Скорость пика пропорциональна величине звукового сигнала этого пика.

Танцы минус: то же, что и Dance Party, но пики сигналов испускаются с одного конца.
Импульс: пики сигналов отображаются как яркие импульсы, которые поступают из центра полосы. Ширина импульса зависит от уровня сигнала.

Световая полоса: в пиках освещается вся полоса.

Цветные полоски: пики сигналов отображаются как цветные полосы, которые исчезают.

Цветные полоски 2: подобно цветные полоски, но каждая полоска сжимается и исчезает.

Вспышки: пики сигналов отображаются в виде светодиодной вспышки в случайном месте. Начальный цвет белый, а затем исчезает через другой цвет.

Светлячки: пики сигналов отображаются как одиночные светодиоды в случайном месте, и они перемещаются влево или вправо и исчезают. Их скорость зависит от величины сигнала.

Цветовые схемы

Случайная двухцветная схема: выбраны два случайных цвета и только они используются для отображения пиков сигнала. Со временем будут выбраны новые цвета. Используйте param, чтобы настроить скорость изменения цветовой схемы. Если ручка потенциометра «параметры» в верхнем положении, цвета будут меняться часто и каждый пик сигнала будет иметь новый цвет. Рекомендую установить ручку в средину.

Радуга: все пики сигналов отображаются как один и тот же цвет (с небольшим количеством случайных вариаций) и этот цвет меняется как радуга с течением времени. Скорость изменения цвета устанавливается потенциометром param.

Цветные частоты: в этом режиме каждый пик сигнала окрашивается в зависимости от частотной полосы где он находится. Самая низкая полоса красного цвета, и дальше вверх по спектру. Есть 8 полос частот: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый, белый. Этот цветовой режим наиболее интересен, когда частотная характеристика настроена на все полосы частот.

Диапазон частот: вы можете управлять тем диапазоном частот, на который откликается цветомузыка. Чтобы установить диапазон нажмите и удерживайте обе кнопки. Используйте ручку param, чтобы выбрать, сколько из восьми частотных диапазонов будет показываться. Если вы хотите выделить бас и ритм музыки, установите частотную характеристику только на самые низкие 2 или 3 полосы. Если вы хотите показать все частоты в музыке (например, вокал и более высокие инструменты), выберите все полосы частот.

Это видеоинструкция по настройке и она же демонстрация визуализатора в работе. Там в конце две музыкальные композиции с разными алгоритмами.

Крутейшая свето- цветомузыка на Arduino и адресной светодиодной ленте WS2812b. Работает с лентой любой длины (до 450 светодиодов (версия 1.1), до 350 светодиодов (версия 2.0)), и может быть размещена в любом месте в квартире или автомобиле.

Режимы работы (переключаются кнопкой или с ИК пульта (версия 2.0)):

  • VU meter (столбик громкости): от зелёного к красному
  • VU meter (столбик громкости): плавно бегущая радуга
  • Светомузыка по частотам: 5 полос симметрично
  • Светомузыка по частотам: 3 полосы
  • Светомузыка по частотам: 1 полоса
  • Стробоскоп (Версия 2.0)
  • Подсветка (Версия 2.0)
    • Постоянный цвет
    • Плавная смена цвета
    • Бегущая радуга
    • Плавная анимация (можно настроить)
    • Автонастройка по громкости (можно настроить)
    • Фильтр нижнего шума (можно настроить)
    • Автокалибровка шума при запуске (можно настроить)
    • Поддержка стерео и моно звука (можно настроить)
    • Лента не гаснет полностью (Версия 2.0)
    • (Версия 2.1) все настройки сохраняются в памяти и не сбрасываются при перезагрузке
      • Сохранение настроек происходит при выключении кнопкой звёздочка (*)
      • А также через 30 секунд после последнего нажатия на любую кнопку ИК пульта





      ВИДЕО

      КОМПОНЕНТЫ

      Каталоги ссылок на Алиэкспресс на этом сайте:

      Стараюсь оставлять ссылки только на проверенные крупные магазины, из которых заказываю сам. Также по первые ссылки ведут по возможности на минимальное количество магазинов, чтобы минимально платить за доставку. Если какие-то ссылки не работают, можно поискать аналогичную железку в каталоге Ардуино модулей . Также проект можно попробовать собрать из компонентов моего набора GyverKIT .

      • Купить в РФ, 60 свет/метр, 30 свет/метр
      • Купить на Али ссылка, ссылка
      • Black PCB / White PCB – цвет подложки ленты, чёрная / белая. В видео была чёрная
      • 1m/5m – длина ленты в метрах (чтобы заказать 2 метра, берите два заказа 1m, очевидно)
      • 30/60/74/96/100/144 – количество светодиодов на 1 метр ленты. В видео использовалась лента 60 диодов на метр
      • IP30 лента без влагозащиты (как на видео)
      • IP65 лента покрыта силиконом
      • IP67 лента полностью в силиконовом коробе
      • Постфикс ECO – лента чуть более низкого качества, меньше меди, на длинной ленте будет сильно проседать яркость

      СХЕМЫ











      ПРОШИВКА

      ВНИМАНИЕ! Максимально подробный гайд по началу работы с платой и загрузке прошивки для проекта находится ЗДЕСЬ . Изучи его внимательно, прежде чем писать на форум или в группу ВК!

      УПРАВЛЕНИЕ

      НАСТРОЙКА ОПОРНОГО НАПРЯЖЕНИЯ. Потенциометр настройки опорного напряжения настраивается “методом тыка” пока не заработает (у меня стоит в середине). Подстройка нужна при смене источника аудио или изменении его потенциальной громкости.

      • Если во время работы в режиме VU метра (первые два режима) шкала всё время горит – слишком низкое опорное напряжение, Ардуино получает слишком высокий сигнал
      • Если не горит – опорное слишком высокое, системе не удаётся распознать изменение громкости с достаточной для работы точностью

      МОЖНО СОБРАТЬ СХЕМУ БЕЗ ПОТЕНЦИОМЕТРА! Для этого параметру POTENT (в скетче в блоке настроек в настройках сигнала) присваиваем 0. Будет задействован внутренний опорный источник опорного напряжения 1.1 Вольт. Но он будет работать не с любой громкостью! Для корректной работы системы нужно будет подобрать громкость входящего аудио сигнала так, чтобы всё было красиво, используя предыдущие два пункта по настройке.

      НАСТРОЙКА НИЖНЕГО ПОРОГА ШУМОВ является очень важной, в идеале выполняется 1 раз для любого нового источника звука или смены громкости старого. Есть 3 варианта настройки:

      • Ручная: выключаем AUTO_LOW_PASS и EEPROM_LOW_PASS (ставим около них 0), настраиваем значения LOW_PASS и SPEKTR_LOW_PASS вручную, методом тыка
      • Автонастройка при каждом запуске: включаем AUTO_LOW_PASS, выключаем EEPROM_LOW_PASS . При подаче питания музыка должна стоять на паузе! Калибровка происходит буквально за 1 секунду.
      • По кнопке: при удерживании кнопки 1 секунду настраивается нижний порог шума (музыку на паузу!)
      • Из памяти (ЛУЧШИЙ ВАРИАНТ): выключаем AUTO_LOW_PASS и включаем EEPROM_LOW_PASS
        • Включаем систему, источник звука подключен проводом
        • Ставим музыку на паузу
        • Удерживаем кнопку 1 секунду (либо кликаем кнопку 0 (ноль) на ИК пульте
        • Загорится светодиод на плате Arduino, погаснет через ~1.5 секунды
        • Значения шумов будут записаны в память и будут САМИ загружаться при последующем запуске!

        ОШИБКИ И FAQ

        В: Купил ленту, на ней контакты G, R, B, 12. Как подключить?
        О: Это не та лента, можешь выкинуть

        В: Прошивка загружается, но выползает рыжими буквами ошибка “Pragma message….”
        О: Это не ошибка, а информация о версии библиотеки

        В: Что делать, чтобы подключить ленту своей длины?
        О: Посчитать количество светодиодов, перед загрузкой прошивки изменить самую первую в скетче настройку NUM_LEDS (по умолчанию стоит 120, заменить на своё). Да, просто заменить и всё.

        В: Сколько светодиодов поддерживает система?
        О: Версия 1.1: максимум 450 штук, версия 2.0: 350 штук

        В: Как увеличить это количество?
        О: Варианта два: оптимизировать код, взять другую библиотеку для ленты (но придётся переписать часть). Либо взять Arduino MEGA, у неё больше памяти.

        В: Какой конденсатор ставить на питание ленты?
        О: Электролитический. Напряжение 6.3 Вольт минимум (можно больше, но сам кондер будет крупнее). Ёмкость – минимум 1000 мкФ, а так чем больше тем лучше.

        В: Как проверить ленту без Arduino? Горит ли лента без Arduino?
        О: Адресная лента управляется по спец протоколу и работает ТОЛЬКО при подключении к драйверу (микроконтроллеру)

        Набор радиодеталей с печатной платой. Схема состоит из 4-х канального ОУ LM324, активных фильтров, транзисторных ключей управления оптопарами МОС3021, симисторами ВТ137(138), что позволяет применить максимальную мощность ламп на каждый канал до 1,5(2,5)КВт. До 200Вт на канал симисторы работают без радиаторов. Схема исполнена с максимальной электробезопасностью, не имеет трансформаторов и моточных элементов схемы, имеет раздельные общий и канальные регуляторы уровней, имеет достаточное усиление для работы от линейных выходов аппаратуры. Хорошо показали в работе люминисцентные светильники с электронным балластом без задержки включения. Питание схемы 9-12 вольт, потребляемый ток около 6мА.

        Рассматриваемая схема является четырёхканальным цветомузыкальным устройством (приставкой) на симисторах. В настоящее время на рынке световых приборов имеется широкий выбор ламп накаливания с цветным стеклом или фильтрами различных цветов, ламп с нанесённым цветным жаростойким покрытием различных форм и мощности, поэтому набор не комплектуется лампами. Основополагающим принципом при выборе схемы была максимальная электробезопасность устройства при её наладке и эксплуатации. Имеется много литературы по данной тематике и схем в Интернете, но большинство деталей схем приставок на лампах имеет гальваническую связь с сетью 220 вольт или развязка исполнена на трансформаторах, что делает схему более громоздкой и менее безопасной. Учитывая эти обстоятельства, устройство исполнено с применением печатной платы из фольгированного стеклотекстолита, а не на макетной бакелитовой плате, как в варианте №015. Рассмотрим схему устройства. Схема состоит из переменного резистора R1, которым регулируется уровень входного сигнала. Далее сигнал поступает на четыре аналогичных друг другу канала, отличающихся только параметрами конденсаторов С1 - С8, применяемых в активных фильтрах каждого из каналов. Фильтр, состоящий из конденсаторов меньшей ёмкости, пропускает более высокочастотный спектр сигнала, и лампы этого канала окрашивают в синий или фиолетовый цвет, а канал с максимальной ёмкостью конденсаторов рассчитан на низкую часть спектра и лампы этого канала окрашивают красным цветом. Остальные основные цвета занимают соответствующие места по аналогии с расположением цветов в радуге. Схема имеет достаточный запас усиления, что позволяет ей работать с сигналами низкого уровня, поэтому желательно подавать на вход приставки сигнал с линейных выходов аппаратуры. Если это невозможно, используйте выход на наушники или внешний динамик источника аудиосигнала.

        Рассмотрим работу схемы на примере первого (синего, Blue) канала: сигнал с R1 поступает на переменный резистор регулировки уровня сигнала первого канала R2. С него через R6 на конденсаторы активного фильтра С1, С2. Через С2 сигнал высокочастотного спектра поступает на вход 6 (9,13,2) одного из четырёх операционных усилителей (ОУ) DA1.1 микросхемы LM324 (LM224). Резистор R14 (15,16,17) устанавливает режим работы ОУ, конденсатор С1 образует обратную связь в работе активного фильтра. С выхода 7 (8,14,1) усиленный сигнал через конденсатор С10 (11,12,13) и резистор R21 (23,25,27) поступает на транзисторный ключ VT1 (2,3,4), роль которого выполняет транзистор КТ315.

        Резисторы смещения R28 (29,30,31) обеспечивают закрытое состояние транзистора при отсутствии сигнала на его входе. Резисторы R20, (22,24,26) ограничивают ток управляющего светодиода оптопары МОС3021 (можно использовать любую оптопару серии МОС30хх).

        При поступлении сигнала на вход транзистора он открывается, ток от плюса питания через резистор R20 (22,24,26) протекает через светодиод оптопары. В результате световое излучение светодиода открывает светочувствительный динистор оптопары, через токоограничительный резистор R32 (33,34,35) замыкается цепь между управляющим электродом симистора VS1 (2,3,4) У и анодом А2, симистор открывается и лампа загорается. От уровня сигнала на входе транзистора зависит степень открытия симистора и, соответственно, яркость загорающейся лампы. В устройстве используются симисторы ВТ137 (138) (далее цифры в маркировке указывают допустимое напряжение между анодами симистора).

        Особенность схемы позволяет установить один общий радиатор на все симисторы, но для безопасности необходимо закрепить симисторы к радиаторам или к одному общему радиатору через специальные изолирующие прокладки и изолирующие винт крепления втулки, которые можно извлечь из неисправного блока питания компьютера. В случае использования на один канал ламп мощностью менее 200 ватт, радиатор можно не устанавливать. В качестве светоизлучателей для пожарной безопасности желательно применить готовые светильники с лампами накаливания. Для питания устройства используйте любой источник питания постоянного напряжения 9-12 вольт, строго соблюдая полярность. Предохранитель защищает устройство и сеть от короткого замыкания. При использовании ламп мощностью до 100Вт на канал, максимальный ток будет достигать 2 ампер, соответственно, достаточно использовать предохранитель 2-3А. При использовании 200 ваттных ламп, предохранитель должен быть на 4-5А и более при использовании более мощных ламп.

        В этом случае необходимо будет усилить медные дорожки от сетевого клеммника до анодов симисторов дополнительными перемычками или напаять голый медный провод сверху дорожек. Перед подключением устройства в сеть установите защитные изолирующие накладки на предохранитель и симисторы. При включении в сеть во время настройки следите, чтобы плата находилась на изолирующем основании без посторонних токопроводящих предметов в зоне платы.

        Помните, что элементы схемы, связанные с сетью (симисторы, 4 и 6 выводы оптопары, резисторы R32-R35, лампы, С15-С22) находятся под опасным напряжением!

        Первые эксперименты по связи света и музыки проводил композитор Скрябин А.Н. еще в царской России. В СССР развитие идеологии медиаискусства принял на себя Галеев А.М., НИИ «Прометей», г. Казань. В это время Ваш покорный слуга занимался разработкой цветомузыкальных устройств в ОКБ при ВЗЭМ г. Волгограда. Сегодня я предлагаю обзор наиболее интересных схем светомузыки с профессиональными комментариями.


        Преимущества цветомузыки на светодиодах

        В применении к цветомузыкальным устройствам (ЦМУ) светодиоды с ярким свечением имеют ряд преимуществ, по сравнению с лампами накаливания:

        • потребляют заметно меньше энергии;
        • их не нужно красить или ставить перед ними цветные фильтры;
        • схемы ЦМУ проще, не требуется гальваническая развязка.

        Простейшая схема светомузыки на 12 В


        По этой причине с них и начнем. Для тех, кто не имеет опыта в радиоэлектронике, имеет смысл собрать для начала совсем простую схему на одном биполярном транзисторе. В качестве источника питания можно использовать, например, «крону». Также подойдет любой низковольтный блок питания, который найдется в доме, сгодится и зарядка для мобильника с выходом 5 Вольт. В последнем случае сопротивление резистора, ограничивающего ток через светодиод, нужно уменьшить до 220 Ом.


        Маркировка полупроводников указана на фото. Подключаете схему к колонке или громкоговорителю машины, и светодиод начинает мигать. Если он светится постоянно, нужно уменьшить уровень громкости, если совсем не горит – наоборот увеличить. Транзистор будет открываться и обеспечивать ток питания нагрузки каждый раз, когда напряжение на его базе будет превышать определенное значение. Получилась простейшая светомузыка, так как свечение излучателя связано с громкостью музыки.

        Далее мы будем постепенно наращивать функционал схем, естественно, усложняя их. Советую последовательно ознакомиться со всем материалом, так как при этом Вы научитесь комбинировать части схем, создавая собственное устройство с нужными характеристиками. При этом во всех случаях используются однотипные, взаимозаменяемые элементы.

        Самая простая цветомузыка на транзисторах


        Это схема именно цветомузыки, так как устройство обеспечивает связь частоты звука с цветом светового излучателя. Три канала различаются RC фильтрами, установленными перед транзисторами. В результате нижний канал цветомузыки, к которому подключен красный светодиод, реагирует на звуковые сигналы частотой ниже 300 Гц, средний, с синим светодиодом, работает в диапазоне 300-6000 Гц, а верхний, к которому подключен зеленый светодиод, работает от сигналов выше 6000 Гц. Звуковой сигнал, как и в прошлом варианте, подается с выхода для наушников, колонок или динамиков авто.

        Деление на частотные диапазоны в ЦМУ условное и может быть выбрано другим. Более того, границы каналов по частоте получаются нечеткие из-за низкой избирательности фильтров, а еще они заметно сдвигаются из-за разброса параметров радиоэлементов. При этом три переменных резистора на входе схемы позволяют отрегулировать ее так, чтобы светодиоды мерцали примерно с одинаковой интенсивностью.



        Маркировку керамических конденсаторов смотрите на фото. Транзисторы все те же КТ315 или КТ3102. Подойдут вообще почти любые биполярные структуры р-n-р. Можно использовать элементы проводимости n-р-n, если сменить полярность подключения питания и светодиодов.


        Если установить мощные транзисторы, например, КТ805, то к выходу устройства можно подключить много светодиодов или светодиодную ленту. Еще лучше использовать составные транзисторы КТ829 с большим коэффициентом усиления, с которыми чувствительность устройства заметно вырастет.

        Количество светодиодов, которые можно подключить параллельно, определяется их рабочим током и максимальным током коллектора транзистора. Например, максимальный ток коллектора транзисторов КТ315 с индексом Ж, И составляет 50 мА, значит, допускается в нагрузке один светодиод с рабочим током 30 мА. Эти же транзисторы с другими индексами допускают нагрузку до 100 мА, значит, можно подключить параллельно пару аналогичных светодиодов.

        Мощные транзисторы могут использоваться с радиаторами, так что для них нужно принимать максимальный ток коллектора в том режиме, в котором Вы собираетесь их использовать. Какой ток потребляет конкретная светодиодная лента, нужно читать на ее упаковке.

        Светодиоды имеют разброс параметров, так что, если их соединить параллельно без отдельных резисторов, свечение будет разным. Токоограничивающие резисторы легко рассчитать, пользуясь законом Ома. Для этого надо знать рабочее напряжение и ток используемых светодиодов. Если считать не хочется, можно сначала подключить сопротивление 200 Ом в любой из рассматриваемых схем. Если светодиод горит плохо, сопротивление надо уменьшать до того, пока ток через светодиод не достигнет нужного значения (от 10 до 30 мА в зависимости от марки).

        Фильтры в этой схеме несколько другие, но сути это не меняет. Как и в прошлом случае, на входе можно предусмотреть подстроечные или переменные резисторы для выравнивания чувствительности каналов. В следующем видео демонстрируется сборка представленного выше устройства.


        Маркировку электролитических конденсаторов смотрите на фото. Для монтажа простой схемы в домашних условиях нет смысла травить печатную плату. Удобно использовать навесной монтаж на макетной плате. В простейшем случае радиоэлементы самодельной приставки можно закрепить горячим клеем на пластике выводами вверх. После застывания клея радиодетали надежно зафиксированы, и их выводы нетрудно соединить пайкой с помощью провода.


        Звуковой сигнал в рассмотренных схемах подается с выхода для наушников или колонок. Для того, чтобы повысить чувствительность устройства и обеспечить его работу от сигнала с линейного выхода любого гаджета, необходим предварительный усилитель. Представленная схема подключается к входу всех рассмотренных выше схем. Переменный резистор R1 обеспечивает согласование уровня сигнала, чтобы светодиоды работали оптимально.


        Можно вовсе избежать электрического соединения, если снабдить самодельную цветомузыку микрофоном с подключением по представленной схеме. Переменный резистор R4 обеспечивает согласование уровня. Подойдет почти любой электретный микрофон. Резистор R1 обеспечивает питание и нагрузку микрофона. Электретный микрофон – полярное устройство, так что его минус нужно соединять с минусом питания, а плюс подключить к точке R1, С1.

        Как сделать своими руками четырехканальную приставку



        Если собрать вместе рассмотренные выше схемы цветомузыки, получится примерно такой вариант. В данном случае частотный диапазон звукового сигнала разделен на 4 полосы, соответственно предусмотрено 4 канала, и RC фильтры перед транзисторами немного другие.

        На входе четырехканальной цветомузыки имеется предварительный усилитель на транзисторах VT1, VT2, так что сигнал на ЦМУ можно подавать с линейного выхода компьютера и любого другого прибора. При этом переменный резистор R3 обеспечивает регулировку практически любого входного сигнала. Резисторы R1, R2 обеспечивают развязку стереосигнала по входу. Подстроечные резисторы R7, R10, R14, R18 позволяют отрегулировать чувствительность каждого канала по отдельности. Диоды на базах транзисторов «срезают» положительную составляющую сигнала переменного тока, и транзисторы открываются отрицательной полуволной сигнала с фильтра.


        В схеме предусмотрен стабилизированный источник питания на КР142ЕН5. Для его сборки требуется трансформатор, и зачастую проще использовать любой имеющийся блок питания постоянного тока с выходным напряжением 9-12 В. Восемь цепочек светодиодов с рабочим током по 30 мА потребуют питание порядка 240 мА, так что блок питания с максимальным током нагрузки 500 мА и более точно подойдет. Подойдет и нестабилизированный источник напряжения, так как светодиоды имеют низкий динамический диапазон свечения, и пульсации по питанию не будут вызывать их ложное срабатывание.

        Мы уже обсуждали возможность параллельного включения светодиодов с токоограничивающими резисторами. В этой схеме они соединены еще и последовательно. При этом нужно обеспечить, чтобы суммарное падение напряжения на включенных последовательно светодиодах была заведомо меньше напряжения питания схемы.


        Например, для двух включенных последовательно светодиодов с рабочим напряжением 3,6 В получаем 2х3,6 В =7, 2 В, что меньше 9 В питания. «Запас» по напряжению нужно погасить резистором с учетом дополнительного падения напряжения на открытом транзисторе порядка 0,7 В. В качестве примера считаем «запас» по напряжению для двух светодиодов: 9 В – 7,2 В – 0,7 В = 1,1 В. Теперь по закону Ома, для светодиодов с рабочим током 20 мА получаем: 1,1 В: 20 мА = 55 Ом.

        Таким образом, подавая более высокое напряжение, можно включать последовательно больше светодиодов, не увеличивая мощность транзисторов. При этом безопасным следует считать напряжение не более 36 В и нужно использовать транзисторы и электролитические конденсаторы, которые имеют соответствующие параметры.


        Собирать устройство удобно на печатной плате, эскиз которой представлен на фото. Размеры платы 80х45 мм.



        Транзисторы КТ502 (с любым буквенным индексом) можно заменить на КТ503 с полярностью n-p-n. При этом одновременно необходимо заменить КТ361 на КТ315 или КТ3102 (с любым буквенным индексом), а также сменить полярность подключения питания, диодов, светодиодов и электролитических конденсаторов. В этом случае вместо предварительного усилителя можно подключить микрофон по рассмотренной выше схеме.

        Маркировку конденсаторов мы рассмотрели выше. При параллельном соединении их емкость суммируется, что облегчает подбор элементов для фильтров. Напряжение, указанное на корпусе электролитических конденсаторов, должно быть заведомо больше напряжения источника питания. Конденсатор С8 должен быть рассчитан не менее, чем на 25 В.


        Резисторы подойдут любые мощностью 0,125-0,25 Вт. Цветная маркировка поможет определить их номиналы. Подстроечные резисторы мы рассмотрели выше, переменный резистор подойдет любой, подходящий по размерам.


        Диоды VD1 – VD4 любые малогабаритные. Для Д9 маркировка указана на фото.


        В блоке питания в качестве выпрямителя удобнее использовать готовый диодный мост. При его отсутствии подойдут дискретные диоды типа КД105, КД106, КД209 и прочие с рабочим током не менее 300 мА. Если подобрать малогабаритные элементы, их удастся установить на плату вместо диодного моста. Светодиоды нужного цвета выбирайте с ярким свечением. Желательно знать их рабочее напряжение и номинальный ток питания.


        Вместо КР142ЕН5 удобнее использовать КР142ЕН8А,Г, которая обеспечивает 9 В на выходе без резистора R22. В этом случае вместо него ставится перемычка. Трансформатор нужно подобрать с напряжением на выходе 12-15 В с током нагрузки не менее 300 мА. В следующем видео пошаговая инструкция по сборке ЦМУ.

        Установка с микрофоном на светодиодной ленте RGB

        Следующее ЦМУ 3-х канальное. Здесь операционные усилители (ОУ) А1.2, А1.3, А1.4 вместе с набором RC элементов образуют активные фильтры. На ОУ А1.2 собран низкочастотный фильтр, и к выходу канала подключены красные светодиоды, на ОУ А1.3 собран среднечастотный фильтр, и к выходу канала подключены зеленые светодиоды, на ОУ А1.4 собран высокочастотный фильтр, и к выходу канала подключены синие светодиоды.

        Фильтры активного типа обеспечивают заметно более высокую избирательность, чем рассмотренные выше схемы. При этом частотных диапазонов всего три, и эффект связи уровня звучания музыки соответствующих частот с яркостью свечения светодиодов определенного цвета становится более выразительным.


        ОУ А1.1 выполняет роль предварительного усилителя сигнала с встроенного микрофона. Резистор R1 обеспечивает питание и нагрузку микрофона. Электретный микрофон М1 – полярное устройство, так что его минус нужно соединять с минусом питания, а плюс подключить к точке R1, С3.

        Переменный резистор R6 обеспечивает регулировку общей чувствительности устройства. Элементы R18, R21, R24 обеспечивают настройку яркости мерцания каждого канала по отдельности.

        Для питания устройства используется однополярный источник, поэтому для ОУ с двухполярным питанием выполнена схема «виртуальная земля». Она выполнена на элементах R2, R3 и С2 и обеспечивает половину напряжения источника питания. Прямые входы всех ОУ подключены к «виртуальной земле» через резисторы 100 кОм.

        Четыре ОУ схемы находятся в одном корпусе микросхемы КР1402УД2 (зарубежный аналог LM324). Конечно, можно использовать четыре ОУ общего применения в отдельных корпусах, например, КР140УД708. При этом топология печатного монтажа изменится.


        Выходные каскады каналов выполнены по схеме составных элементов и состоят из пары транзисторов. К коллекторам транзисторов средней мощности КТ817 подключены минусы соответствующего цвета светодиодной ленты RGB. Подстроечные элементы R19, R22 и R25 позволяют установить начальное напряжение смещения, при котором светодиоды будут немного светиться при отсутствии звукового сигнала. Такой режим работы позволит избежать резких вспышек света и сделает работу ЦМУ более плавной. Однако в этом случае на транзисторах будет выделяться значительная мощность, и они могут перегреться при использовании без радиаторов.


        Хотя КТ817 допускают максимальный ток до 3000 мА, однако максимальная рассеиваемая мощность с применением без радиатора составляет 1 Вт. В пересчете это означает, что в обозначенном выше режиме при использовании без радиатора нельзя подключить более 3-х светодиодов параллельно. На практике это значит, что чем больше рабочий ток RGB ленты, тем большей площади радиаторы необходимо использовать. Все прочие радиоэлементы схемы подбираются по тем же принципам, что и для всех вышеизложенных схем.

        Таким образом, мы рассмотрели схемы светомузыкальных устройств в порядке возрастания их функциональности и сложности. Цветомузыка своими руками — хороший опыт в освоении электроники, а также интересная самореализация. Если внимательно изучить материал, можно создать своими руками устройство для вечеринок по собственным требованиям, с учетом имеющихся радиодеталей. В заключение посоветую серьезно отнестись к оформлению собственно подсветки. Для создания праздника цвета и музыки ее исполнение может оказаться даже более значимым, чем выбор схемы устройства.

        Читайте также: