Космическая миссия лего ev3

Обновлено: 08.05.2024

Известная притча гласит, что, когда к мудрецу обратилась молодая мать с ребенком на руках и спросила, с какого возраста ей следует начинать воспитание отпрыска, старец ответил, что она опоздала на столько лет, сколько уже было ребенку. С выбором будущего призвания ситуация достаточно похожая. Сложно требовать осознания своих склонностей и интересов от младенца, но вот уже в средней школе начинаются всевозможные специализации, и к этому времени неплохо бы уже знать, в какую сторону двигаться подросшему чаду. Но одно мы знаем уже почти наверняка – в течение ближайших десятилетий от 30 до 80% профессий будут полностью автоматизированы.

Робототехника, кибернетика, понимание алгоритмов – тот набор навыков, с которым, скорее всего, человеку не будут грозить настолько туманные перспективы. Конечно, скорее всего параллельно с заменой рабочей силы на роботов будет развиваться и концепция безусловного базового дохода, вот только вряд ли вы хотите для своего ребенка подобного будущего.

Способов быстро показать молодой и заинтересованной аудитории основы программирования и робототехники сейчас существует много. Все они стоят недорого, достаточно просты в освоении, дают уже через несколько часов понимание основ алгоритмов и концепций кибернетических устройств. Но в учебных классах легко столкнуться и с недостатками этих платформ – ограниченной износоустойчивостью (да и чего греха таить – «идиотоустойчивостью» тоже) макетных плат, не очень дружелюбными для детей 11-12 лет интерфейсами ПО, относительно небольшим элементом «игры».

Со всеми этими недостатками уже больше двадцати лет борются в самой известной компании-производителе развивающих наборов LEGO Education. Речь идет, разумеется, о платформе MINDSTORMS Education EV3. Начиная с произведенных в начале 90-х Mindstorms RCX и заканчивая самым современным комплексом MINDSTORMS Education EV3 принцип формирования платформы остается прежним. В основе лежит «умный кирпич» (“intelligent brick”), это микрокомпьютер с экраном и портами ввода-вывода, к которому подключаются все остальные компоненты. Как и в любой робототехнической системе периферийные устройства подразделяются на сенсоры и эффекторы. При помощи сенсоров робот воспринимает окружающий мир, а благодаря эффекторам – реагирует на него в соответствии с заложенной программой. Соединяются компоненты платформы вместе простыми кабелями без пайки, а механические конструкции ограничены только прочностью пластиковых деталей и фантазией конструкторов.

В предыдущем посте мы рассматривали возможности таких решений в общем и целом, сейчас же хотим подробнее остановиться именно на LEGO MINDSTORMS Education EV3.

LEGO MINDSTORMS Education EV3 сделан совместимым с деталями Lego Technic. Это означает, что платформу можно использовать для создания самых разнообразных и даже невероятных конструкций, от простых «машинок» и «роборук» до сложных конвейеров или даже «решателей» кубика Рубика. Фактически любой набор Lego Technic может стать источником деталей для проектов, также никаких проблем не будет с заменой пострадавших запасных частей. Да, выглядят они не так брутально, как старый советский алюминиевый конструктор, но на практике оказываются даже прочнее изделий из металла. По крайней мере в моей коллекции, стартовавшей в 1993 году, еще не обнаружилось ни одной сломанной детали.

В комплекте с базовым образовательным набором MINDSTORMS Education EV3 есть 541 деталь Lego Technic. Можно докупить как специализированный ресурсный набор вроде 45560 (или более старый 9648, выпускавшийся еще для NXT), так и просто большой конструктор типа 42043 (2800 деталей) или 42055 (почти 4000 деталей), и, вдоволь наигравшись с основной моделью, пустить его на «кирпичики» для кибернетических опытов. В пересчете на одну деталь Lego здесь очень сильно выигрывает у других наборов – всего 3-5 рублей за одну штуку.


Ну а если у кого-то сохранилась старая коллекция, включающая десятки тысяч деталей, то беспокоиться о ресурсах и вовсе не придется.



Скриншот из сервиса Brickset (интерактивная база для владельцев конструкторов Lego, позволяющая собирать разнообразную статистику) автора

Впрочем, это касается только «пассивных» элементов вроде балок, колес или соединительных пинов. Сенсоры и эффекторы, разумеется, значительно дороже, но и в базовом комплекте их более чем достаточно. Mindstorms EV3 поставляется в комплекте с тремя моторами (два побольше и помощнее и один компактный сервопривод), парой сенсоров касания (своего рода «умные» кнопки), ультразвуковым, гироскопическим и цветовым сенсорами (он же может работать в режиме сенсора освещенности). Плюс сохранена совместимость с датчиками от предыдущего поколения роботов Lego Education – Mindstorms NXT (в их число входит, например, датчик уровня шума).


Но вернемся к «умному кирпичу», сердцу системы. Это действительно довольно увесистый и объемный «кирпичик», оснащенный монохромным ЖК-экраном 178х128 (на него выводится не только меню, но и всевозможные кастомные картинки в процессе работы) с изменяемым цветом подсветки. При помощи проводов со стандартным разъемом RJ-12 к нему подключаются сенсоры и эффекторы (до четырех устройств каждого типа), есть слот для microSDHC и USB-порт.


Последний можно использовать как для загрузки собственно программ, так и для обновления прошивки. Однако не обделен микроконтроллер и беспроводными интерфейсами, при желании загружать программы можно через Wi-Fi (нужен внешний модуль) или Bluetooth (встроен). Также, если мы собираем робота с дистанционным управлением, «рулить» им можно с использованием беспроводной связи со смартфона или планшета.

Плюс появился четвертый порт для моторов, само по себе это значительное расширение функционала, которое оправдывает апгрейд.

USB-порт теперь поддерживает режим хоста, это позволяет не только подключать Wi-Fi-адаптер, но и соединять несколько блоков EV3 в одного сложного робота. Правда, и уровень задач при этом становится совершенно «не детским».

Наконец, MINDSTORMS Education EV3 обзавелся поддержкой аккумуляторного питания. Вместо шести АА-батареек можно установить идущий в комплекте литиево-ионный аккумулятор на два с хвостиком ампер-часа. Конечно, никто не запрещает пользоваться пальчиковыми аккумуляторами типа eneloop, но необходимость их вынимать для зарядки делает юзабилити ниже среднего. Да и по цене пара комплектов eneloop c зарядником вполне сравнима с фирменным аккумулятором.


Теперь посмотрим на эффекторы из базового набора. Два из них – мощные моторы, аналогичные уже использовавшимся в NXT, продолговатые устройства, развивающие благодаря внутренней понижающей передаче серьезный крутящий момент.


На случай блокировки мотора предусмотрен механический фрикцион, который начинает проскальзывать, если трение больше расчетного, так что мотор довольно сложно спалить.
Имеется датчик угла поворота с разрешением в один градус (мотор сообщает контроллеру, на какой угол сейчас повернута его ось) и возможность точно синхронизировать вращение всех подключенных моторов.


Третий, так называемый М-сервопривод (средний по размеру мотор) выдает в три раза меньший крутящий момент, но зато его скорость вращения выше почти в два раза.


Что касается сенсоров, то на самом деле вовсе не обязательно ограничиваться теми, что предлагает LEGO Education (хотя и их выше крыши для любого образовательного проекта), ряд сторонних компаний выпускает совместимые и порой довольно экзотические сенсоры. Исходный код прошивки и аппаратные спецификации полностью открыты.

Программное обеспечение

Мы много говорили об аппаратной базе, но на самом деле далеко не только она определяет эффективность занятий по робототехнике. Именно наличие действительно интуитивно понятного ПО на множестве платформ (Мак, ПК, мобильные устройства) и готовых учебных планов делает LEGO MINDSTORMS Education EV3 платформой выбора при обучении, и особенно на рубеже начальной и средней школы, для детей лет десяти.



Приветственный экран приложения на iPad

Визуализация алгоритмов в родном ПО LEGO MINDSTORMS Education EV3 находится просто на высшем уровне – достаточно буквально за несколько минут усвоить основные виды взаимодействия логических блоков (условия перехода, цикл и т.д.) и в дальнейшем постепенно наращивать сложность программ. Разумеется, есть и готовые обучающие проекты для десятков разнообразных моделей роботов, а при желании в интернет-сообществах можно найти тысячи интересных программ.



Пример программы в приложении для iPad

Продвинутые же пользователи могут установить LabVIEW или RobotC – «мозги» LEGO MINDSTORMS Education EV3 полностью совместимы с этими пакетами. Вот экспортировать старые проекты для NXT без дополнительной конвертации, увы, не выйдет.

С образовательной же точки зрения гораздо больший интерес представляет версия ПО для настольных компьютеров. Оно позволяет вести электронные тетради учеников, благодаря которым преподаватель может из своей версии приложения оценивать успехи конкретного ученика и наблюдать за его прогрессом. Плюс ко всему можно использовать не только имеющиеся на борту ПО учебные материалы (коих множество), но и с помощью встроенного редактора контента создавать свои собственные.



Обучающие видео по работе с редактором контента EV3

А еще в десктоп-версии есть утилита регистрации данных с возможностью программирования областей графика в зависимости от пороговых значений. То есть теперь педагог может с легкостью продемонстрировать работу современных технологий в рамках умного дома, к примеру.

Микрокомпьютер EV3 будет собирать данные с датчиков в реальном режиме времени и в зависимости от температурного фона запускать ту или иную программу модели. При высокой температуре включается вентилятор, при низкой — обогреватель. А ученики смогут фиксировать и анализировать данные, дорабатывая модель.



Журналирование данных

Открытость прошивки «умного кирпича» уже сыграла свою роль: существуют альтернативные варианты с поддержкой большинства популярных языков программирования (десятки их). По большому счету использование EV3 можно «прикрутить» к любому образовательному проекту, связанному с программированием, поскольку мало что так радует, как возможность увидеть работу собственных алгоритмов «в железе».

Многие ждут, что камнем преткновения в этой истории может оказаться цена. Действительно, за Базовый набор придется выложить 29 900 рублей, плюс еще 2 500 отдать за зарядку. Однако в эту сумму включены детали и электроника для комфортной работы двух учеников, а также полноценное базовое ПО с 48 готовыми занятиями (которое с января 2016 полностью бесплатно, как для частных лиц, так и для организаций). Конечно, дополнительное оборудование и комплекты заданий могут увеличить стоимость, но в пределах разумного. Так комплект для 8 учеников, включающий базовые и ресурсные наборы LME EV3, зарядные устройства, ПО и дополнительный комплект заданий «Инженерные проекты», обойдется в 174 900. Вполне приемлемо для оснащения, например, кружка в школе.

Да, это заметно дороже простых Arduino-подобных платформ. Но и возможности, а также уровень вовлеченности гораздо выше. Учебную программу на базе EV3 можно спокойно планировать на всю среднюю школу и дальше. Кроме того, при адекватном использовании LEGO MINDSTORMS Education EV3 банально «переживет» несколько простых комплектов за счет механических качеств, легкой заменяемости и доступности деталей (на моей практике только один шлейф RJ-12 потребовал замены в 10-летнем NXT).

В итоге мы видим практически оупенсорсный проект, поддерживаемый гигантской компанией со всеми положенными в такой ситуации бонусами – большим жизненным циклом, доступностью запчастей и расширений, официальными и любительскими гайдами, развитым сообществом. Mindstorms стал практически стандартом западных образовательных классов по робототехнике для детей, и было бы по-настоящему здорово увидеть его широкое распространение и в России.

Выбор пути

А теперь к главному. В отличие от наборов WeDo 2.0, EV3 ориентирован на среднюю школу, соответственно, на детей постарше, для которых вопрос выбора будущей профессии стоит уже посерьезнее.

Используя EV3, каждый из учеников сможет активнее раскрыть те способности, которые были в нем заложены природой, воспитанием и учебным процессом.

Прирожденный математик будет пристально следить за телеметрией датчиков, за тем, как именно фиксируется пройденное роботом расстояние, как записывается угол, на который он отклоняется, и прочее.

Будущий айтишник, само собой, погрузится в программирование робота, разбирая алгоритмы, по которым тот движется. И непременно будет создавать свои, не предусмотренные штатной инструкцией.

Увлеченный физикой ребенок сможет с помощью робота проводить наглядные эксперименты, благо с датчиками у наборов проблем нет, равно как и у ребенка — с фантазией.

В общем, какие бы у ребенка ни были интересы и любимые предметы в школе, обучение с использованием наборов MINDSTORMS EV3 позволит четче их выделить и сконцентрироваться на их развитии в будущем.

В жизни

На данный момент решения компании уже используются учащимися для создания интересных проектов, как в рамках различных конкурсов, так и для общего развития. О ряде из них в этом году писали СМИ.

Астраханские школьники Руслан Казимов и Михаил Гладышев на базе регионального технопарка разработали робот-тренажер для реабилитации суставов рук.

На разработку тренажёра восьмиклассники потратили чуть меньше двух месяцев. Они представили свой проект на региональном этапе IX Всероссийского конкурса научно-инновационных проектов в ЮФО, где заняли второе место. В дальнейшем они планируют создать промышленный образец – пока разработчики предлагают только прототип, изготовленный из образовательного робототехнического набора LEGO MINDSTORMS Education EV3.

Устройство дублирует движения, выполняемые врачом – суставы начинают работать, тем самым восстанавливается подвижность не только их, но и групп мышц. Пока устройства связаны через Bluetooth, в будущем будут взаимодействовать с помощью интернета или Wi-Fi.

Аналоги такого устройства есть на рынке, однако астраханский прибор может работать одновременно с плечевым, лучезапястным и локтевым суставами. Кроме того, он переносной и работает от аккумулятора. Также есть возможность удалённого управления, то есть пациент может тренироваться, не выходя из дома.

На Всемирной Олимпиаде по робототехнике 2015 года (WRO 2015) российская команда DRL из Санкт-Петербурга была награждена специальным призом за креативность от компании LEGO Education (LEGO EDUCATION CREATIVITY AWARD).

Российская команда DRL представила проект CaveBot. Ребята из Санкт-Петербурга под руководством тренера Сергея Филиппова создали уникального робота-исследователя для обнаружения неизведанных областей в пещерах. Разработка затрагивает различные научные области, так как уникальный робот делает возможным выполнение разнообразных по сложности задач.

Команда построила робота-скалолаза, оснащенного различными датчиками, для обнаружения предметов с целью их последующего исследования. Полученные данные могут быть превращены в 3D-модели на компьютере.

А 13-летний Шубхэм Бэнерджи создал принтер Брайля из частей LEGO в рамках школьного научного проекта. Позже, при участии его семьи, был создан стартап по запуску изобретения, который получил финансовую поддержку от технической корпорации Intel.



(Photo: Marcio Jose Sanchez, AP)

Идея создать принтер пришла к Шубхэму после исследования Брайля в сети Интернет. Поняв, что принтеры для слепой печати стоят от 2,000$ и выше, школьник решил сделать более дешевую версию.

Вскоре после изобретения незрячие дети и их родители начали связываться с Шубхэмом с единственной просьбой — сделать недорогой принтер Брайля, обещая «купить его прямо с полки».

Как видите, использование MINDSTORMS Education EV3 в процессе обучения позволяет учащимся по-максимуму включать фантазию, создавая все новые и новые механизмы, которые не только помогают реализовать идеи или наглядно провести какие-либо эксперименты, но и начать определяться со своей будущей профессией.

Если у вас есть вопросы насчет использования этих решений в образовательном процессе (или о самих продуктах) — пишите их в комментариях.

В этом курсе учащиеся станут настоящими учеными и инженерами. Они выполнят задания из области STEM, стимулирующие творческий подход в решении задач, общение и освоение навыков работы в команде. Они также поработают на захватывающей платформе — Космическом учебном поле, где у них будет возможность творчески применить свои знания в области STEM и развить навыки решения задач, реализуя проекты «Космической миссии».

Уроки

Приготовьтесь к полёту на Марс

Приготовьтесь к полёту на Марс

Начните работу над заданиями Космической миссии.

Активация связи

Активация связи

Спроектируйте, соберите и запрограммируйте робота, который сможет перемещаться к спутниковой тарелке и приводить её в вертикальное положение.

Комплектация экипажа

Комплектация экипажа

Спроектируйте, постройте и запрограммируйте робота, который сможет переместиться на лунную базу, забрать командира экипажа и высадить её на стартовой площадке.

Освобождение робота MSL

Освобождение робота MSL

Спроектируйте, постройте и запрограммируйте робота, способного переместиться к кратеру и освободить робота MSL, шесть колёс которого должны снова оказаться на поверхности Марса.

Запуск спутника

Запуск спутника

Спроектируйте, постройте и запрограммируйте робота, который сможет поместить Спутник в отмеченную область на учебном поле.

Доставка образцов пород

Доставка образцов пород

Спроектируйте, соберите и запрограммируйте робота, который сможет перемещаться к Образцам пород, собирать их и доставлять на стартовую площадку.

Обеспечение энергоснабжения

Обеспечение энергоснабжения

Спроектируйте, постройте и запрограммируйте робота, способного добраться до Солнечной панели и повернуть ручку, чтобы раскрыть её.

Инициирование запуска

Инициирование запуска

Спроектируйте, постройте и запрограммируйте робота, способного переместиться к пусковой установке и нажать кнопку, которая запустит Ракету и активирует Станцию на Марсе.

Спроектируйте, постройте и запрограммируйте робота, способного переместиться к пусковой установке и нажать кнопку, которая запустит Ракету и активирует Станцию на Марсе.

lesson-header-3-8

План урока

1. Подготовка

  • Ознакомьтесь с материалами для учащихся в приложении EV3 Classroom.
  • Соберите информацию о ракетах и о том, как их запускают в космос.
  • При необходимости проведите несколько занятий по модулю Тренировка для роботов в приложении. Это поможет познакомить учащихся с решениями LEGO MINDSTORMS Education EV3.
  • К концу урока дети должны будут собрать восемь моделей из набора «Космическая миссия EV3» и настроить учебное поле.
  • Если у вас нет возможности провести сдвоенный урок, отведите на работу над этим проектом несколько занятий.

Часть А

  • Используйте идеи, приведённые в разделе Начало обсуждения, чтобы вовлечь учеников в обсуждение этой миссии.
  • Расскажите о цели, правилах и значках отличия для данной миссии.
  • Разделите класс на команды.

3. Исследование (25 мин.)

  • Проведите мозговой штурм, чтобы совместно придумать идеи по выполнению миссии.
  • Предложите учащимся придумать несколько вариантов как сборки, так и программы.
  • Позвольте командам некоторое время самостоятельно поработать над сборкой и испытанием своих решений.

4. Объяснение (10 мин.)

  • Обсудите основные функции робота, необходимые для того, чтобы он переместился к пусковой установке и нажал кнопку запуска.

Часть B

5. Дополнение (45 мин.)

6. Оценка

  • Выдайте ученикам значки отличия, основываясь на результатах миссии.
  • Оцените творческий подход к решению задачи и командную работу.
  • Для упрощения этой задачи вы можете использовать раздел оценки.

Начало обсуждения

engage-3-8

Используйте следующие вопросы для начала дискуссии о том, как происходит запуск ракет в космос.

  • Что такое космические ракеты?
  • Как их запускают?

Цель миссии
Робот подъезжает к пусковой установке и нажимает кнопку запуска. После запуска Ракета летит на Станцию на Марсе и активирует её.

Пример решения для выполнения этой миссии

MCR-SV-3-7-Initiate-Launch-Cover

PLAY

Правила миссии
Существует пять правил, которые применяются ко всем заданиям «Космической миссии». Познакомьте учащихся с ними до начала работы.

  • Робот всегда должен начинать выполнение миссии со стартовой площадки.
  • Робот должен покинуть стартовую площадку перед выполнением миссии.
  • Возвращение робота считается «успешным», когда любая часть робота пересекает линию стартовой площадки.
  • Пока робот находится за пределами стартовой площадки, к нему нельзя прикасаться.
  • Если вы прикоснулись к роботу, который находится полностью за пределами стартовой площадки и держит объект, нужно вернуть объект в исходное положение и начать миссию сначала.

Значки отличия
Существует четыре значка отличия. Расскажите ученикам, что команды получают значки отличия в зависимости от того, насколько успешно завершат миссию. Описания значков отличия для этой миссии приведены в разделе Оценка результатов ниже.

Советы по сборке

Творческие решения
Данный проект разработан таким образом, чтобы каждый учащийся или команда могли предложить своё уникальное решение. Помогите командам сформулировать идеи в ходе мозгового штурма с помощью следующих вопросов:

  • Какими способами робот может добраться до пусковой установки?
  • Какой механизм можно использовать, чтобы нажать кнопку запуска?

solution-3-8

Пример решения для миссии
Пример решения для миссии использует следующие устройства:

Выполнение миссии
Установите в исходное положение Ракету, Пусковую установку и Станцию на Марсе. Установите модель из примера решения в стартовую позицию 2 на учебном поле и выполните миссию. Убедитесь, что положение Пускового модуля соответствует показанному на видео.

MCR-SV-3-7-Initiate-Launch-Cover

PLAY

Поиск и устранение неисправностей в ходе миссии
Используйте Датчик цвета в режиме «Яркость отражённого света» для распознавания «Земли» на учебном поле. Для получения надёжных результатов начните с калибровки Датчика цвета с помощью чёрно-белых линий за пределами стартовой площадки.

Советы по программированию

Программа примера решения

Индивидуальный подход

Способы упростить задание

  • Работайте вместе со своими учениками, чтобы помочь им выяснить, какую силу нужно приложить к Пусковой установке, чтобы запустить Ракету, когда робот займёт нужное положение.
  • Перед началом этой миссии пройдите с учащимися занятие Цвета и линии в модуле Тренировка для роботов.
  • Предложите детям помогать друг другу в процессе обучения.

Способы сделать задание ещё интереснее

  • Ограничьте миссию по времени.
  • Поставьте перед учениками задачу использовать при выполнении миссии Датчик цвета.
  • Добавьте конструктивные ограничения, определив количество доступных деталей LEGO ® или «цену» каждого типа деталей и максимальную «стоимость» одного робота.

Возможности для оценки

Журнал педагога
Разработайте критерии оценки, максимально соответствующие вашим задачам, например следующие.

  1. Задание выполнено частично.
  2. Задание выполнено полностью.
  3. Результаты превзошли ожидания.

Используйте следующие критерии для оценки успеваемости учащихся.

  • Учащиеся спроектировали робота, соответствующего требованиям миссии.
  • Учащиеся предложили креативные решения и рассмотрели несколько из них.
  • Учащиеся работали в команде и успешно завершили миссию.

Значки отличия
Выдайте ученикам значки, основываясь на том, насколько успешно они завершили миссию.

  • Бронзовый. Команда запустила Ракету по плану, но ракета не достигла Марса.
  • Серебряный. Команда запустила Ракету, которая достигла Марса, но активировать станцию не удалось.
  • Золотой. Команда запустила Ракету и активировала станцию.
  • Платиновый. Команда запустила Ракету и активировала станцию. Кроме того, команда добавила в конструкцию собственные функции.

assessment-row-space

Самостоятельная оценка
Пусть каждый ученик определит уровень, который, по его мнению, соответствует качеству его работы на занятии.

  • Бронзовый. Мы сделали всё возможное в сложных обстоятельствах.
  • Серебряный. У нас возникали трудности, но мы не сдавались до конца миссии.
  • Золотой. Мы завершили миссию и получили отличные результаты.
  • Платиновый. Мы не только завершили миссию, но и добавили в конструкцию оригинальные и эффективные функции.

Развитие языковых навыков

Для разностороннего развития языковых навыков предложите ученикам следующие задания.

  • Подготовить презентацию или видео, иллюстрирующие особенности конструкции и работу своих роботов.
  • Подготовить презентацию с объяснением ключевых особенностей своей программы. Примечание. Для выполнения этого задания требуется дополнительное время.

Перспективы профессионального развития

Учащиеся, которым было интересно данное задание, могут попробовать себя в следующих сферах деятельности.

Спроектируйте, постройте и запрограммируйте робота, который сможет переместиться на лунную базу, забрать командира экипажа и высадить её на стартовой площадке.

lesson-header-3-3

План урока

1. Подготовка

  • Ознакомьтесь с материалами для учащихся в приложении Education EV3 Classroom.
  • Соберите информацию о том, как космонавты готовятся к космическим миссиям.
  • При необходимости внесите в план несколько занятий по модулю Тренировка для роботов в приложении. Это поможет познакомить учащихся с решениями LEGO MINDSTORMS Education EV3.
  • К концу урока дети должны будут собрать восемь моделей из набора «Космическая миссия EV3» и настроить учебное поле.
  • Если у вас нет возможности провести сдвоенный урок, отведите на работу над этим проектом несколько занятий.

Часть А

  • Используйте идеи, приведённые в разделе Начало обсуждения, чтобы вовлечь учеников в обсуждение этой миссии.
  • Расскажите о цели, правилах и значках отличия для данной миссии.
  • Разделите класс на команды.

3. Исследование (25 мин.)

  • Проведите мозговой штурм, чтобы совместно придумать идеи по выполнению миссии.
  • Предложите учащимся придумать несколько вариантов как сборки, так и программы.
  • Позвольте командам некоторое время самостоятельно поработать над сборкой и испытанием своих решений.

4. Объяснение (10 мин.)

  • Обсудите основные функции робота, необходимые для того, чтобы переместиться на лунную базу и забрать командира экипажа.

Часть B

5. Дополнение (45 мин.)

6. Оценка

  • Выдайте ученикам значки отличия, основываясь на результатах миссии.
  • Оцените творческий подход к решению задачи и командную работу.
  • Для упрощения этой задачи вы можете использовать раздел оценки.

Начало обсуждения

Во время полёта на Марс экипаж должен выдержать темноту, низкую гравитацию и изоляцию. Чтобы физически и психологически подготовить экипаж к таким условиям, и нужна лунная база. На Земле для имитации условий полётов на Марс используется исследовательская станция в Антарктиде.

engage-3-3

Используйте следующие вопросы для начала дискуссии о том, как космонавты тренируются и готовятся к космическим полётам.

  • Кто такой космонавт?
  • Как космонавты могут подготовиться к космическим полётам?

Цель миссии
Робот перемещается на лунную базу, подбирает командира экипажа и высаживает её на стартовой площадке.

Пример решения для выполнения этой миссии

MCR-SV-3-2-Assemble-Your-Crew-Cover

PLAY

Правила миссии
Существует пять правил, которые применяются ко всем заданиям «Космической миссии». Познакомьте учащихся с ними до начала работы.

  • Робот всегда должен начинать выполнение миссии со стартовой площадки.
  • Робот должен покинуть стартовую площадку перед выполнением миссии.
  • Возвращение робота считается «успешным», когда любая часть робота пересекает линию стартовой площадки.
  • Пока робот находится за пределами стартовой площадки, к нему нельзя прикасаться.
  • Если вы прикоснулись к роботу, который находится полностью за пределами стартовой площадки и держит объект, нужно вернуть объект в исходное положение и начать миссию сначала.

Значки отличия
Существует четыре значка отличия. Расскажите ученикам, что команды получают значки отличия в зависимости от того, насколько успешно завершат миссию. Описания значков отличия для этой миссии приведены в разделе Оценка результатов ниже.

Советы по сборке

Творческие решения
Данный проект разработан таким образом, чтобы каждый учащийся или команда могли предложить своё уникальное решение. Помогите командам сформулировать идеи в ходе мозгового штурма с помощью следующих вопросов.

  • Какими способами робот может переместиться к лунной базе?
  • Какой механизм можно использовать, чтобы забрать командира экипажа?

solution-3-3

Пример решения для миссии
Пример решения для миссии использует следующие расширения.

PDF-3-3-Solution-Cover

Выполнение миссии
Установите модель из примера решения в стартовую позицию 2 на учебном поле и выполните миссию. Убедитесь, что положение Модуля экипажа соответствует показанному на видео.

MCR-SV-3-2-Assemble-Your-Crew-Cover

PLAY

Поиск и устранение неисправностей в ходе миссии
Используйте Датчик цвета в режиме «Определение цвета», чтобы определить момент, когда робот достигнет лунной базы на учебном поле. Используйте Датчик цвета в режиме «Яркость отражённого света» для обнаружения командира экипажа. Если Датчик цвета не распознаёт изменения в цвете на поле, попробуйте откалибровать датчик.

Тягач доставил ракету «Ангара» на стартовый стол и установил ее в горизонтальном положении. Специальный кран-подъемник соединил ее с мачтой обслуживания и привел в положение для взлета. Лунный модуль был выведен на лунную орбиту и состыкован с кораблем «Федерация». Затем их посадили на поверхность спутника Земли. А кратер неподалеку на всякий случай исследовали на наличие льда.

Это не завязка отечественного блокбастера. Это сценарии проектов для учебного комплекта «Лунная Одиссея», который знакомит учеников 5-9 классов с российской программой покорения ближнего космоса. Причем знакомит не как детишек в песочнице, а через программирование и полную автоматизацию с помощью MINDSTORMS EV3 и кастомных элементов.

В комплект «Лунная Одиссея» входят базовые наборы LEGO MINDSTORMS Education EV3 с зарядными устройствами, тематический и тренировочный маты для проведения проектов, методические пособия с 8 тематическими и 12 учебными миссиями, а также дополнительный набор из 1334 деталей — с его помощью собирается ракета-носитель «Ангара», стартовая площадка для её запуска, корабль «Федерация», луноход, лунный модуль, антенны и даже кратер.


Собрали всю комплектацию на одной из стадий работы. Слева в коробке — MINDSTORMS EV3, в середине собранная ракета «Ангара» и несобранные дополнительные элементы пособия. Справа частично собранная стартовая площадка. В белой коробке много дополнительных деталей, рядом — лунный кратер. Завершает композицию тубус с картами.


Разложили черную коробку. На фото один из модулей EV3 с кучей всего интересного.


Одна из двух карт для проектов

На основе «Лунной Одиссеи» разработан учебный план из 12 миссий и 8 тематических проектов, рассчитанный на 72 академических часа. По ссылкам даны полные версии материалов. В них входят инструкции, интересные исторические, технические описания и даже небольшие тесты — так что на одной сборке все не заканчивается, обучение получается всесторонним. Практически у каждой миссии есть несколько решений — конструктор позволит нескольким командам школьников самостоятельно придумать свой вариант.

Или же можно подключить двигатель, предназначенный для движения колеса робота, напрямую к стартовой площадке и выполнить ту же самую манипуляцию другим способом.

Большинство задач решаются на двух тренировочных картах. Одна из них предназначена для работы с цветовыми полями и моделирования полёта искусственного спутника Земли. На поле размером 120 х 120 см нанесено изображение нашей планеты и градусная шкала.

«Лунная Одиссея» знакомит с историей первого искусственного спутника Земли, первого человека (и вообще живого существа) в космосе, рассказывает о круговой и эллиптической орбите, о спутниковой навигации. В первой учебной миссии нужно будет собрать луноход на основе MINDSTORMS EV3. О нем чуть ниже. Кроме этого, можно собрать еще один, олдскульный луноход — он хорошо позирует на фоне кратеров.

На этом этапе строительства по материалам «Лунной Одиссеи» ученикам рассказывают о значении манипуляторов. Зачем они вообще нужны, чем помогают в космосе, как их использует луноход. Программирование MINDSTORMS EV3 начинается не сразу, но все равно занимает большую часть курса.


«Федерация» — многоразовый пилотируемый космический корабль, который придет на смену «Союзам» и «Прогрессам». По одному из сценариев его нужно будет выводить на орбиту

Основная модель, выполняющая роль лунохода, основана на программируемом модуле MINDSTORMS EV3. Восемь портов позволяют подключить к нему двигатели и разные датчики. Цель первого этапа — собрать луноход: робота, который опирается на два колеса с независимыми моторами и металлический шарик. Такая схема опоры обеспечивает большую мобильность — помимо поворотов и движения, этот луноход может крутиться на месте.

В набор деталей также входят разные сенсоры — гироскоп, сенсор цвета, расстояния и так далее. Они позволяют программировать работу робота по сценариям, зависящим от условий внешней среды. Например, в углах одного тренировочного поля есть цветные квадраты: робота можно запрограммировать на выполнение действий после попадания на каждый из этих квадратов. Датчик определяет зеленый цвет под роботом — робот говорит «Green» — поворачивает направо — едет вперед на три оборота колеса — берет манипулятором кубик LEGO — возвращается на три оборота колеса назад — кладет кубик. Так мы смоделировали орбитальный перелет и вывод на орбиту некоего модуля.

Внешне более замысловатая модель — это стартовая площадка для «Ангары». Вполне собирается за час. Главное — сразу разложить все детали по цветам и типам, чтобы потом не перебирать их в поисках «вот такой вот маленькой синей втулки с крестовиной с одной стороны».

В комплект «Лунная Одиссея» входит множество шестеренок разного размера. С ними можно сделать разные манипуляторы для нашего робота. Причем для разных нагрузок — от нескольких кубиков LEGO до ракеты-носителя «Ангара». Простейший вариант манипулятора собирается за пару минут, но можно изучить тему подробнее и сделать манипулятор с разной силой и скоростью движения.

Все блоки LEGO MINDSTORMS EV3 программируются через стандартную среду. Некоторые этапы программирования проверяются с помощью тестовых вопросов в материалах для учеников.

Комплект «Лунная Одиссея» разработан в сотрудничестве с группой московских педагогов, корпорацией «Роскосмос» и ОРКК (Объединенной ракетно-космической корпорацией). Он не только знакомит с российской космической программой и основами робототехники, но также помогает закрепить навыки исследовательской деятельности и работы в команде. И, как мы надеемся, возбуждает у школьников интерес к космосу и робототехнике.

Читайте также: